DCKTKT: A New Discrete Cosine-Krawtchouk-Tchebichef Transform
Main Article Content
Abstract
Real-world signals are often intricate and difficult to analyze. Therefore, to facilitate the analysis of signal components, the researchers represent the signal in different domains (transform domain), providing a new perspective and offering significant advantages in understanding the various components of signals. Therefore, discrete transforms have been the subject of extensive study. In this paper, a new hybrid form of orthogonal polynomial is introduced named discrete Cosine-Krawtchouk–Tchebichef transform (DCKTKT). Which is based on combining discrete Cosine transform with krawtchouk and tchebichef polynomials. The mathematical and theoretical formulations of DCKTKT are presented, followed by an evaluation of its performance against other hybrid forms. The results demonstrate that DCKTKT along with their corresponding moments. Surpasses existing hybrid polynomials regarding energy compaction. Additionally, a face recognition application is performed and by using a well-known database with clean and noisy environments, DCKTKT is used to transform face images into the moment domain to facilitate feature extraction. illustrating the proposed polynomial's robustness against different types of noise and its superior feature extraction capabilities compared to the latest hybrid forms.
Article Details
Section
How to Cite
References
Abbas, N. H.,2005. Implementations of 8x8 DCT and IDCT on different FPGA technologies using the modified loeffler algorithm. Journal of Engineering, 11(4), pp. 707-714. https://doi.org/10.31026/j.eng.2005.04.08.
Abdul-Hadi, A. M., Abdulhussain, S. H., and Mahmmod, B. M., 2020. On the computational aspects of Charlier polynomials. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1763553.
Abdulhussain, S. H., Mahmmod, B. M., Naser, M.A., Alsabah, M. Q., Ali, A., and Al-Haddad, S. A. R., 2021. A robust handwritten numeral recognition using hybrid orthogonal polynomials and moments. Sensors, 21(6), pp. 1-18. https://doi.org/10.3390/s21061999.
Abdulhussain, S. H., Ramli, A. R., Al-Haddad, S. A. R., Mahmmod, B. M., and Jassim, W. A., 2017. On computational aspects of Tchebichef polynomials for higher polynomial order. IEEE Access, 5(c), pp. 2470-2478. https://doi.org/10.1109/ACCESS.2017.2669218.
Abdulhussain, S. H., Ramli, A. R., Al-Haddad, S. A. R., Mahmmod, B. M., and Jassim, W. A., 2018. Fast recursive computation of Krawtchouk polynomials. Journal of Mathematical Imaging and Vision, 60(3), pp. 285–303. https://doi.org/10.1007/s10851-017-0758-9.
Abdulhussain, S. H., Ramli, A. R., Mahmmod, B. M., Saripan, M. I., Al-Haddad, S. A. R., and Jassim, W. A., 2019. A new hybrid form of Krawtchouk and Tchebichef polynomials: Design and application. Journal of Mathematical Imaging and Vision, 61(4), pp. 555–70. https://doi.org/10.1007/s10851-018-0863-4.
Abood, Z. I., 2013. Image compression using 3-D two-level technique. Journal of Engineering, 19(11 SE-Articles), pp. 1407–24. https://doi.org/10.31026/j.eng.2013.11.05.
Ameen, M. W., Abbas, A. I., and Alwan, N. A. S., 2023. Face identification using back-propagation adaptive multiwavenet. Journal of Engineering, 18(03), pp. (392–402). https://doi.org/10.31026/j.eng.2012.03.12.
Asli, B. H. S., and Flusser, J., 2014. Fast computation of Krawtchouk moments. Information Sciences, 288(1), pp. 73–86. https://doi.org/10.1016/j.ins.2014.07.046.
Benradi, H., Chater, A., and Lasfar, A., 2023. A hybrid approach for face recognition using a convolutional neural network combined with feature extraction techniques. IAES International Journal of Artificial Intelligence, 12(2), pp. 627–40. https://doi.org/10.11591/ijai.v12.i2.pp627-640.
Chellappa, R., Manjunath, B. S., and Malsburg, C. V. D., 1992. A feature based approach to face recognition. In Proceeding of 1992 IEEE Conference on Computer Vision and Pattern Recognition. Champaign, IL, USA. (pp. 373-378). IEEE, 373–78. https://doi.org/ 10.1109/CVPR.1992.223162.
El Madmoune, Y., El Ouariachi, I., Zenkouar, K., and Zahi, A., 2023. Robust face recognition using convolutional neural networks combined with Krawtchouk moments. International Journal of Electrical and Computer Engineering, 13(4), pp. (4052–67). https://doi.org/10.11591/ijece.v13i4.pp4052-4067.
Feinsilver, P., and Kocik, J., 2005. Krawtchouk polynomials and Krawtchouk matrices. Recent Advances in Applied Probability, Springer, Boston, MA Publisher, pp. 115–41. https://doi.org/10.1007/0-387-23394-6_5.
Hu, M. K., 1962. Visual pattern recognition by moment invariants. IEEE Transactions on Information Theory, 8(2), pp. (179–87). https://doi.org/10.1109/TIT.1962.1057692.
Hussein, H. A., Hameed, S. M., Mahmmod, B. M., Abdulhussain, S. H., and Hussain, A. J., 2023. Dual stages of speech enhancement algorithm based on super gaussian speech models. Journal of Engineering, 29(09), pp. 1–13. https://doi.org/10.31026/j.eng.2023.09.01.
Idan, Z. N., Abdulhussain, S. H., and Al-Haddad, S. A. R., 2020. A new separable moments based on Tchebichef-Krawtchouk polynomials. IEEE Access 8, pp. 41013–25. https://doi.org/10.1109/ACCESS.2020.2977305.
Jain, A. K., 1989. Fundamentals of digital image processing. Prentice-Hall, Inc. ISBN- 0133361659.
Jassim, W. A., Raveendran, P., and Mukundan, R., 2012. New orthogonal polynomials for speech signal and image processing. IET Signal Processing, 6(8), pp.713–23. https://doi.org/10.1049/iet-spr.2011.0004.
Jassim, W. A., and Raveendran, P., 2012. Face recognition using discrete Tchebichef-Krawtchouk transform. In Proceedings of 2012 IEEE International Symposium on Multimedia. Irvine, CA, USA. (pp. 120–27). IEEE. https://doi.org/10.1109/ISM.2012.31.
Lu, A., and Asli, B. H. S., 2023. Seismic image identification and detection based on Tchebichef moment invariant. Electronics, 12(17), pp. (3692). https://doi.org/10.3390/electronics12173692.
Mahmmod, B. M., Abdul-Hadi, A. M., Abdulhussain, S. H., and Hussien, A., 2020. On computational aspects of krawtchouk polynomials for high orders. Journal of Imaging. 6(8), pp. 81. https://doi.org/10.3390/jimaging6080081.
Mahmmod, B. M., Abdulhussain, S. H., Suk, T., and Hussain, A., 2022. Fast computation of Hahn polynomials for high order moments. IEEE Access, 10, pp. (48719–32). https://doi.org/10.1109/ACCESS.2022.3170893.
Mahmmod, B. M., Ramli, A. R. B., Abdulhussain, S. H., Al-Haddad, S. A. R., and Jassim, W. A., 2018. Signal compression and enhancement using a new orthogonal-polynomial-based discrete transform. IET Signal Processing, 12(1), pp. (129–42). https://doi.org/10.1049/iet-spr.2016.0449.
Markandey, V., and DeFigueiredo, R. J. P., 1992. Robot sensing techniques based on high-dimensional moment invariants and tensors. IEEE Transactions on Robotics and Automation, 8(2), pp. (186–95). https://doi.org/10.1109/70.134273.
Mukundan, R., 2004. Some computational aspects of discrete orthonormal moments. IEEE Transactions on Image Processing, 13(8), pp. (1055–59). https://doi.org/10.1109/TIP.2004.828430.
Mukundan, R., Ong, S. H., and Lee, P. A., 2001. Image analysis by Tchebichef moments. IEEE Transactions on Image Processing, 10(9), pp. (1357–64). https://doi.org/10.1109/83.941859.
Pachori, R. B., 2023. Time-Frequency analysis techniques and their applications time-frequency analysis techniques and their applications. ISBN-9781003367987.
Pee, C. Y., Ong, S. H., and Raveendran, P., 2017. Numerically efficient algorithms for anisotropic scale and translation Tchebichef moment invariants. Pattern Recognition Letters, 92, pp. (68–74). https://doi.org/10.1016/j.patrec.2017.04.008.
Radeaf, H. S., Mahmmod, B. M., Abdulhussain, S. H., and Al-Jumaeily, D., 2019. A steganography based on orthogonal moments. In Proceedings of the International Conference on Information and Communication Technology. Baghdad, Iraq. (pp. 147–153). Association for Computing Machinery. https://doi.org/10.1145/3321289.3321324.
Tahiri, M. A., Karmouni, H., Sayyouri, M., and Qjidaa, H., 2022. 2D and 3D image localization, compression and reconstruction using new hybrid moments. Multidimensional Systems and Signal Processing, 33(3), pp. (769-806). https://doi.org/10.1007/s11045-021-00810-y.
Walmsley, N. P., Skodras, A. N., and Curtis, K. M., 1994. A fast picture compression technique. IEEE Transactions on Consumer Electronics, 40(1), pp. (11–19). https://doi.org/10.1109/30.273656.
Wang, M., and Shang, X., 2020. A fast image fusion with discrete Cosine transform. IEEE Signal Processing Letters, 27(8), pp. (990–94). https://doi.org/10.1109/LSP.2020.2999788.
Wang, Y., Vilermo, M., and Leonid, Y., 2000. Energy compaction property of the MDCT in comparison with other transforms. journal of the audio engineering society, (5178). https://aes2.org/publications/elibrary-page/?id=9160
Wu, H., and Yan, S., 2016. Computing invariants of Tchebichef moments for shape based image retrieval. Neurocomputing, 215, pp. (110-117). https://dx.doi.org/10.1016/j.neucom.2015.05.147.
Yap, P. T., Paramesran, R., and Ong, S. H., 2003. Image analysis by Krawtchouk moments. IEEE Transactions on Image Processing, 12(11), pp. (1367–77). https://dx.doi.org/10.1109/TIP.2003.818019.
Yap, P. T., Paramesran, R., and Ong, S. H., 2007. Image analysis using Hahn moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), pp. (2057–62). https://doi.org/10.1109/TPAMI.2007.70709.
Yaru, X., and Xiaohong, C., 2009. Random noise attenuation based on orthogonal polynomials transform. SEG Technical Program Expanded Abstracts, 28(1), pp. (3377–80). https://doi.org/10.1190/1.3255562.
Zafaruddin, G. M., and Fadewar, H. S., 2014. Face recognition: a holistic approach review. In Proceedings of 2014 International Conference on Contemporary Computing and Informatics. (pp.175-178). IEEE.IC3I 2014: 175–78. https://doi.org/10.1109/IC3I.2014.7019610.
Zhu, H., Liu, M., Shu, H., Zhang, H., and Luo, L., 2010. General form for obtaining discrete orthogonal moments. IET Image Processing, 4(5), pp. (335–52). https://doi.org/10.1049/iet-ipr.2009.0195.
Zhu, H., Shu, H., Xia, T., Luo, L., and Coatrieux, J. L., 2007. Translation and scale invariants of Tchebichef moments. pattern recognition, 40(9), pp. (2530–42). https://doi.org/10.1016/j.patcog.2006.12.003.