Transport Assessment Using Bayesian Method to Determine Ride-Hailing in Kula Lumpur: A Case Study
محتوى المقالة الرئيسي
الملخص
This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hailing. According to the final model, the attitude of the commuters towards the speed of ride-hailing over hailing regular taxis was the most important and presented in all probability conditions. Several related studies also identified ride-hailing speed as one of the top reasons for using this travel option. The findings of this study imply that commuters still compare the ride-hailing services with the traditional taxis in Kuala Lumpur, especially in terms of complementarity to other modes, ease of payment, ease of access, and speed. It is critical to have a sustainable strategy for keeping commuters’ satisfaction at the highest level because if the ride-hailing services cannot meet the commuters’ expectations, they may switch back to conventional transport options.
تفاصيل المقالة
كيفية الاقتباس
تواريخ المنشور
المراجع
Aghaabbasi, M., Tavana, M., Di Caprio, D., and Santos, J. R., 2020. Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques. Transportation Research Part A: Policy and Practice, 136(1), pp. 262-281. Doi:10.1016/j.tra.2020.04.013
Ahmad, I., Basheri, M., Iqbal, M. J., and Rahim, A., 2018. Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access, 6, pp. 33789-33795. Doi:10.1109/ACCESS.2018.2841987
Ali, M., Babar, M. M., Waseem, M., and Memon, N. A., 2021. Investigating Optimal Confinement Behaviour of Low-Strength Concrete through Quantitative and Analytical Approaches. Materials, 14(16). Doi:10.3390/ma14164675
Ali, M., Memon, N. A., Waseem, M., and Babar, M. M., 2021. The Influence of COVID-19-Induced Daily Activities on Health Parameters—A Case Study in Malaysia. Sustainability, 13, P. 7465. Doi:10.1186/s12967-021-02767-9
Ali, M., Waseem, M., Babar, M. M., and Memon, N. A., 2020. Travel behaviour and health: Interaction of Activity-Travel Pattern, Travel Parameter and Physical Intensity. Solid State Technology, 63(6), pp. 4026-4039. Doi:10.1371/journal.pone.0239320
Ali, M., Waseem, M., Memon, N. A., and Babar, M. M., 2021. Time-Use and Spatio-Temporal Variables Influence on Physical Activity Intensity. Physical and Social Health of Travelers. Sustainability, 13(21), P. 12226.
Arteaga-Sánchez, R., Belda-Ruiz, M., Ros-Galvez, A., and Rosa-Garcia, A., 2018. Why continue sharing: determinants of behavior in ridesharing services. International Journal of Market Research, 60(6), pp. 647-664. Doi:10.1177/1470785318805300
Barreto, E.D., Magalhães, A.P.D., Fook, M.V.L.D., and Aguiar, P. R., 2021. Clay Ceramic Waste as Pozzolan Constituent in Cement for Structural Concrete. Materials, 14(11), P. 2917. Doi:10.3390/ma14112917
Bauer, G.S., Phadke, A., Greenblatt, J.B., and Rajagopal, D., 2019. Electrifying urban ridesourcing fleets at no added cost through efficient use of charging infrastructure. Transportation Research part C: Emerging Technologies, 105, pp. 385-404. Doi:10.1016/j.trc.2019.05.041
Breiman, L., Friedman, J., Olshen, R., and Stone, C., 1984. Classification and regression trees. Wadsworth Int. Group, 37(15), pp. 237-251. Doi:10.2307/2530946
Chang, X., Noland, R.B., and Chatman, D.G., 2019. Travel mode choice: a data fusion model using machine learning methods and evidence from travel diary survey data. Transportmetrica A: Transport Science, 15(2), pp. 1587-1612. Doi:10.1080/23249935.2019.1620380
Chen, X., Zheng, H., Wang, Z., and Chen, X., 2018. Exploring impacts of on demand ridesplitting on mobility via real world ridesourcing data and questionnaires. Transportation, 45(6), pp. 1771-1791. Doi: 10.1007/s11116-018-9916-1
Chernysheva, N., Lesovik, V., Fediuk, R., and Vatin, N., 2020. Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC). Materials, 13(17), 3847.Doi:10.3390/ma13173847
de Azevedo, A.R.G., Silva, V.G., Vieira, L.H., Costa, P.H.S., and Toledo Filho, R.D., 2021. Effect of the addition and processing of glass polishing waste on the durability of geopolymeric mortars. Case Studies in Construction Materials, 15, e00662. Doi:10.3233/JAD-180807
Deka, D., and Fei, D., 2019. A comparison of the personal and neighborhood characteristics associated with ridesourcing, transit use, and driving with NHTS data. Journal of Transport Geography, 76, 24-33 Doi:10.1016/j.jtrangeo.2019.03.001
Dias, F. F., Hackbarth, A., and Mahmassani, H. S., 2017. A behavioral choice model of the use of car-sharing and ride-sourcing services. Transportation, 44(6), pp. 1307-1323. Doi:10.1007/s11116-017-9797-8
Flores, O. and Rayle, L., 1997. How cities use regulation for innovation: the case of Uber, Lyft and Sidecar in San Francisco. World Conference on Transport Research - WCTR 2016 Shanghai, Shanghai, Transportation Research Procedia. Doi:10.1016/j.trpro.2017.05.232
Friedman, N., Geiger, D., and Goldszmidt, M., 1997a. Bayesian network classifiers. Machine Learning, 29(2-3), pp. 131-163. Doi: 10.1023/A:1007465528199
Friedman, N., Geiger, D., and Goldszmidt, M., 1997b. Bayesian network classifiers. Machine Learning, 29(2), pp. 131-163. Doi:10.1023/A:1007465528199
Gál, M., Kostakos, V., and Missier, F., 2016. Designing for Labour: Uber and the On-Demand Mobile Workforce. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, (pp. 1632-1643). San Jose, California, USA: ACM. Doi:10.1145/2858036.2858476
Grab., 2019a. E-Hailing Regulations [online]. Malaysia. Doi:grab.com/my/blog/e-hailing-regulations/
Grab., 2019b. Pick-up points [online]: Grab. https://www.grab.com/sg/wp-content/uploads/media/20170328-hyperesources/
Harding, S., Kandlikar, M., and Gulati, S., 2016. Taxi apps, regulation, and the market for taxi journeys. Transportation research part A: general 88(1), pp. 15-25. Doi:10.1016/j.tra.2016.03.009
Henao, A., 2017. Impacts of ridesourcing – Lyft and Uber – on transportation including VMT, mode replacement, parking, and travel behavior. Civil Engineering Program. University of Colorado. 10265243
Hughes, R., and MacKenzie, D., 2016. Transportation network company wait times in Greater Seattle, and relationship to socioeconomic indicators. Journal of Transport Geography 56(1) pp. 36-44. Doi:10.1016/j.jtrangeo.2016.08.014
Irawan, M.Z., Belgiawan, P.F., Tarigan, A.K.M., and Wijanarko, F., 2019. To compete or not compete: exploring the relationships between motorcycle-based ride-sourcing, motorcycle taxis, and public transport in the Jakarta metropolitan area. Transportation, 47(5), pp. 1-23.
Doi:10.1007/s11116-019-10019-5
Jiao, J., 2018. Investigating Uber price surges during a special event in Austin, TX. Research in Transportation Business and Management. Doi:10.1016/j.rtbm.2018.02.008.
Jin, S.T., Kong, H., Wu, R., and Sui, D.Z., 2018. Ridesourcing, the sharing economy, and the future of cities. Cities 76(1), pp. 96-104. Doi:10.1016/j.rtbm.2018.02.008
Karlaftis, M.G., and Golias, I., 2002. Effects of road geometry and traffic volumes on rural roadway accident rates. Accident Analysis and Prevention.
Khatami, A., Faezipour, M., Nolte, L. W., Golemati, S., and Ebrahimi, A., 2017. Medical image analysis using wavelet transform and deep belief networks. Expert Systems with Applications, 86, pp. 190-198. Doi:10.1016/j.eswa.2017.05.073
Kima, K., Baekb, C., and Lee, J.-D., 2018. Creative destruction of the sharing economy in action: The case of Uber. Transportation research part A: general, 110(1), pp. 118–127. Doi:10.1016/J.TRA.2018.01.014
Kumar, J., and Joewono, T.B., 2018. Characteristics of Ride-Sourcing usage for Shopping Trips in Bandung, Indonesia. MATEC Web of Conferences 203. Doi:10.1051/matecconf/201820305003
Lavieri, P. S., Nie, Y., and Nie, Y., 2018. A Model of Ridesourcing Demand Generation and Distribution. Transportation, Research, Record, 2672(46), pp. 31-40. Doi:10.1177/0361198118756628
Liu, H., 2010. Feature Selection. In C. Sammut and G. I. Webb eds. Encyclopedia of Machine Learning. Boston, MA, Springer US. pp. 402-406.
McAuley, J., Caetano, T., and Buntine, W., 2010. Graphical Models. In C. Sammut and G. I. Webb eds. Encyclopedia of Machine Learning. Boston, MA, Springer US. pp. 471-479.
Napalang, M.S.G., and Regidor, J.R.F., 2017. Innovation versus regulation: an assessment of the metro Manila experience in emerging ride sourcing transport services. Journal of the Eastern Asia Society for Transportation Studies, 12(1), pp. 343-355. Doi:10.11175/EASTS.12.343
Narayan, J., Cats, O., Van Oort, N., and Hoogendoorn, S., 2019. Does ride-sourcing absorb the demand for car and public transport in Amsterdam? 6th International Conference on Models and Technologies for Intelligent Transportation Systems. Cracow. Doi:10.1109/MTITS.2019.8883371
Nourinejad, M., and Ramezani, M., 2019. Ride-Sourcing modeling and pricing in non-equilibrium two-sided markets. Transportation Research Part B: Methodological. Doi:10.1016/j.trpro.2019.05.043
Orbanz, P., and Teh, Y.W., 2010. Bayesian Network. In C. Sammut and G. I. Webb eds. Encyclopedia of Machine Learning. Boston, MA, Springer US. pp. 81-81.
Prati, G., Pietrantoni, L., and Fraboni, F., 2017. Using data mining techniques to predict the severity of bicycle crashes. Accid Anal Prev, 101, pp. 44-54. Doi:10.1016/j.aap.2017.01.008
Rayle, L., Dai, D., Chan, N., Cervero, R., and Shaheen, S., 2016. Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco. Transport Policy, 45(1), pp. 168-178. Doi:10.1016/j.tranpol.2015.10.004
Shaheen, S., and Chan, N., 2016. Mobility and the sharing economy: potential to facilitate the first- and last-mile public transit connections. Built environment, 42(4), pp. 573–588.
Shi, Q., and Abdel-Aty, M., 2015. Big Data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transportation Research Part C: Emerging Technologies, 58, pp. 380-394. Doi:10.1016/J.TRC.2015.02.022
Stiglic, M., Agatz, N., Savelsbergh, M., and Gradisar, M., 2018. Enhancing urban mobility: Integrating ride-sharing and public transit. Computers and Operations Research, 90, pp. 12-21.
Sun, L., Teunter, R.H., Babai, M.Z., and Hua, G., 2019. Optimal pricing for ride-sourcing platforms. European Journal of Operational Research, 278(3), pp. 783-795. Doi:10.1016/j.ejor.2019.04.044
Svintsov, A.P., Rakhimov, R.Z., Isaev, A.V., Sokolov, V.A., and Tsepaev, R.S., 2020. Effect of nano-modified additives on properties of concrete mixtures during winter season. Construction and Building Materials, 237, P.117527. Doi:10.1016/j.dib.2020.105756
Tarabay, R., and Abou-Zeid, M., 2019. Modeling the choice to switch from traditional modes to ridesourcing services for social/recreational trips in Lebanon. Transportation.
Utkin, L.V., Arshinova, O.S., Panchenko, A.E., and Varlamov, D.A., 2019. A weighted random survival forest. Knowledge-based systems, 177, pp. 136-144. Doi:10.48550/arXiv.1901.00213
Vieira, K.C., Gomes Carvalho, E., Yutaka Sugano, J., and Willer do Prado, J., 2018. The impact of network externalities on acceptance and use of an app of peer-to-peer platform: a study with Uber users. Revista Gestão and Tecnologia, 18(3), pp. 23-46. Doi:10.20397/2177-6652/2018.v18i3.1372
Wang, M., and Mu, L., 2018. Spatial disparities ofUber accessibility: an exploratory analysis in Atlanta, USA. Computers, Environment and Urban Systems, 67(1), pp. 169–175. Doi:10.1016/j.compenvurbsys.2017.09.003
Wang, X., He, F., Yang, H., and Gao, H.O., 2016. Pricing strategies for a taxi-hailing platform. Transportation Research Part E: Logistics and Transportation Review, 93(1), pp. 212–231. Doi:10.1016/j.tre.2016.05.011
Washington, S., Jean, W., and Guensler, R., 1997. Binary recursive partitioning method for modeling hot-stabilized emissions from motor vehicles. Journal of the Transportation Research Board, 1587, pp. 96-105. Doi:10.3141/1587-11
Washington, S., and Wolf, J., 1997. Hierarchical tree-based versus ordinary least squares linear regression models theory and example applied to trip generation. Journal of the Transportation Research Board, 1581, pp. 82-88. Doi:10.3141/1581-11
Watanabe, C., Naveed, K., Neittaanmäki, P., and Fox, B., 2016. Consolidated challenge to social demand for resilient platforms- lessons from Uber's global expansion. Technology in Society, 48, pp. 33-53. Doi:10.1016/J.TECHSOC.2016.10.006
Wenzel, T., Rames, C., Kontou, E., and Henao, A., 2019. Travel and energy implications of ridesourcing service in Austin, Texas. Transportation Research Part D: Transport and Environment, 70, pp. 18-34. Doi:10.1016/j.trd.2019.03.005
World Population Review., 2019. Kuala Lumpur Population [online]. Available at: http://worldpopulationreview.com/world-cities/kuala-lumpur-population/.
Xie, C., Lu, J., and Parkany, E., 2003. Work travel mode choice modeling with data mining: decision trees and neural networks. Transportation Research Record, 1854(1), pp. 50-61. Doi:10.3141/1854-06
Xu, Z., Yin, Y., and Zha, L., 2017. Optimal parking provision for ride-sourcing services. Transportation Research Part B: Methodological, 105, pp. 559-578. Doi: :10.1016/J.TRB.2017.10.003
Yan, X., Levine, J., and Zhao, X., 2019. Integrating ridesourcing services with public transit: An evaluation of traveler responses combining revealed and stated preference data. Transportation Research Part C: Emerging Technologies, 105, pp. 683-696. Doi:10.1016/j.trc.2018.07.029
Yan, X., Richards, S., and Su, X., 2010. Using hierarchical tree-based regression model to predict train-vehicle crashes at passive highway-rail grade crossings. Accident Analysis and Prevention, 42(1), pp. 64-74. Doi:10.1016/j.aap.2009.07.003
Yu, H., and Peng, Z.R., 2019. Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression. Journal of Transport Geography, 75, pp. 147-163. Doi:10.1016/j.jtrangeo.2019.01.004
Zha, L., Yin, Y., and Xu, Z., 2018. Geometric matching and spatial pricing in ride-sourcing markets. Transportation Research Part C: Emerging Technologies, 92, pp. 58-75. Doi:10.1016/j.trc.2018.04.015
Zha, L., Yin, Y., and Yang, H., 2016. Economic analysis of ride-sourcing markets. Transportation Research Part C: Emerging Technologies, 71(1), pp. 249–266. Doi:10.1016/j.trc.2016.07.010
Zhanga, Y., Yu, J., Li, C., Li, Y., and Zhou, Z., 2016. Which one is more attractive to traveler, taxi or tailored taxi? An empirical study in China. In GITSS2015 (Eds.), Procedia Engineering. Doi:10.1039/C4TA04461D
Zhou, J., 2012. Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students. Transportation Research Part A: Policy and Practice, 46(7), pp. 1013-1029. Doi:10.1016/j.tra.2012.04.001