Experimental Investigation of GFRP-Reinforced Hollow Square Concrete Column

محتوى المقالة الرئيسي

Hussein Ali Hussein
AbdulMuttailb I. Said

الملخص

Due to their great structural efficiency and efficient utilization of materials, steel-reinforced hollow-core concrete columns are often employed in utility poles, ground piles, and piers for bridges. Based on research, these columns' performance is impacted by many design parameters. However, corrosion can be a problem in steel-reinforced concrete structures. This paper examines the differences between using steel and GFRP longitudinal bars in hollow-section square concrete columns and explores the potential benefits of using GFRP bars as an option that is economically viable and non-corrosive. According to the study results, the computational results clearly show how an increased longitudinal GFRP reinforcement ratio improves the columns' bearing capability, but when compared to steel reinforcement, it provides less bearing capability. For the same reinforcement ratio (1.46 %, 3.29 %, and 4.9 %), The findings demonstrated that GFRP columns had a decrease in the axial bearing load by 13.1%, 9.2 %, and 9.4%, respectively.

تفاصيل المقالة

كيفية الاقتباس
"Experimental Investigation of GFRP-Reinforced Hollow Square Concrete Column" (2024) مجلة الهندسة, 30(06), ص 108–124. doi:10.31026/j.eng.2024.06.07.
القسم
Articles

كيفية الاقتباس

"Experimental Investigation of GFRP-Reinforced Hollow Square Concrete Column" (2024) مجلة الهندسة, 30(06), ص 108–124. doi:10.31026/j.eng.2024.06.07.

تواريخ المنشور

الإستلام

2023-08-03

الموافقة

2023-10-01

النشر الالكتروني

2024-06-01

المراجع

Abbas, R.M., and Awazlli, A.Q., 2017. Behavior of reinforced concrete column subjected to axial loads and cyclic lateral loading. Journal of Engineering, 23(2), pp. 23-42. Doi:10.31026/j.eng.2017.02.03

Abed, F., and Alhafiz, A.R., 2019. Effect of basalt fibers on the flexural behavior of concrete beams reinforced with BFRP bars. Composite Structures, 215, pp. 23-34. Doi:10.1016/j.compstruct.2019.02.050

ACI Committee, 2019. Building code requirements for structural concrete (ACI 318R-19) and commentary. American Concrete Institute, Farmington Hills, MI, pp. 623.

AlAjarmeh, O.S., Manalo, A.C., Benmokrane, B., Vijay, P.V., Ferdous, W. and Mendis, P., 2019. Novel testing and characterization of GFRP bars in compression. Construction and Building Materials, 225, pp. 1112-1126. Doi:10.1016/j.conbuildmat.2019.07.280

Ali, N.K., Salahldin, A. I., and Hamzaa, A. G., 2015. Impact analysis of reinforced concrete column with side opening aubjected to eccentric axial load. Journal of Engineering, 21(2), pp. 1–29. Doi:10.31026/j.eng.2015.02.01

Alsayed, S.F., Al-Saloum, Y.A., Almusulam, G.H., and Amjjad, M.A., 1999. Concrete column reinforced by glass fiber reinforced polymers rod. Special Publication, 188, pp. 113-112. Doi:10.14359/5614

AL-Shaarbaf, I.A., Allawi, A.A., and AlSallim, N.H. 2017. Strength of reinforced concrete column with transversal opening. Journal of Engineering, 23(10), pp. 124–143. Doi:10.31026/j.eng.2017.10.09

American Concrete Institute, 2006. Guide for the designs and constructions of structure concrete reinforced with fiber‐reinforced polymers (FRP) bar.(ACI 440.1 R‐06). Farmington Hills, Michigan: American Concrete Institute.

Benmokraune, B., El-Sallakawy, E., El-Rageby, A., and El-Gamal, S., 2007. Performance evaluation of innovative concrete bridges deck slab reinforced with fibre-reinforced-polymers bar. Canadian Journal of Civil Engineering, 34(3), pp. 288-350. Doi:10.1139/l06-173

Benmokraune, B., El-Sallakawy, E., El-Rageby, A., and Laclkey, T., 2006. Designing and testing of concrete bridges deck reinforced with glass FRPs bar. Journal of Bridge Engineering, 11(2), pp. 216-239. Doi:10.1061/(ASCE)1084-0702(2006)11:2(217)

Canadian Standard Association, 2012. Design and constructions of buildings component with fiber reinforced polymer. CAN/ CSAS 806-12, Toronto.

Carolin, A., 2003. Carbon fiber reinforced polymers for strengthening of structural elements (Doctoral dissertation, Luleå tekniska universitet).

Cassese, P., De Risi, M.T., and Verderame, G.M., 2019. A degrading shear strength model for RC columns with hollow circular cross-section. International Journal of Civil Engineering, 17(8), pp. 1241-1259. Doi:10.1007/s40999-018-0381-1

Castro, P.F., Howie, I., and Karbhari, V., 1995. Concrete columns reinforced with FRP rods. International Journal of Materials and Product Technology, 10(3-6), pp. 338-343. Doi:10.1504/IJMPT.1995.036460

Chaallal, O., and Benmokrane, B., 1993. Physical and mechanical performance of an innovative glass-fiber-reinforced plastic rods for concrete and grouted anchorages. Canadian Journal of Civil Engineering, 20(2), pp. 244-278. Doi:10.1139/l93-031

Choo, C.C., Harrik, I.E., and Gesond, H., 2006. Strength of rectangular concrete column reinforced with fiber-reinforced polymers bar. ACI Material Journal, 113(3), p.542. Doi:10.14359/15324

Darwin, D., Dolan, C.W., and Nilson, A.H., 2016. Design of concrete structures (Vol. 2). New York, NY, USA, McGraw-Hill Education.

De Luca, A., Mata, F., and Nani, A., 2010. Behavior of full-scale glass fibers-reinforced polymers reinforced concrete column under axial loads. ACI structural journal, 107(5), P. 529. Doi:10.14359/51663912

Deitz, D.H., Harik, I.E., and Gesund, H., 2003. Physical properties of glass fiber reinforced polymer rebar in compression. Journal of Composite for Construction, 7(4), pp. 333-346. Doi:10.1061/(ASCE)1090-0268(2003)7:4(363)

Elchalakani, M., Dong, M., Karrech, A., Mohamed Ali, M.S., and Huo, J.S., 2020. Circular concrete columns and beams reinforced with GFRP bars and spirals under axial, eccentric, and flexural loading. Journal of Composites for Construction, 24(3), P. 04020008. Doi:10.1061/(ASCE)CC.1943-5614.0001008

Elmessalami, N., El Refai, A., and Abed, F., 2019. Fiber-reinforced polymers bars for compression reinforcement: A promising alternative to steel bars. Construction and Building Materials, 209, pp. 725-737. Doi:10.1016/j.conbuildmat.2019.03.105

El-Sallakawy, E., Benmokrane, B., and Desgagné, G., 2003. Fibre-reinforced polymers composites rebar for the concrete deck slabs of Woton Bridges. Canadian Journal of Civil Engineerings, 30(5), pp. 851-870. Doi:10.1139/l03-055

Francis, M., and Teng, B., 2010. Strength of short concrete columns reinforced with high modulus glass fibre reinforced polymer bars. In Proceedings of the 2nd International Structures Specialty Conference, pp. 45-1.

Hales, T.A., Pantelides, C.P., and Reaveley, L.D., 2016. Experimental evaluation of slender high-strength concrete columns with GFRP and hybrid reinforcement. Journal of Composites for Construction, 20(6), P. 04016050. Doi:10.1061/(ASCE)CC.1943-5614.0000709

Hoshikuma, J.I., and Priestley, M.J.N., 2000. Flexural behavior of circular hollow columns with a single layer of reinforcement under seismic loading. Ssrp, 13.

Kim, T.H., Lee, J.H., and Shin, H.M., 2014. Performance assessment of hollow RC bridge columns with triangular reinforcement details. Magazine of Concrete Research, 66(16), pp. 809-824. Doi:10.1680/macr.13.00257

Kobayashi, K., and Fujisaki, T., 1995. 32 compressive behaviour of FRPs reinforcements in non-prestressed concrete member. In Non-Metallic (FRP) Reinforcement for Concrete Structure: Proceedings of the Second International RILEM Symposium (Vol. 29, p. 367). CRC Press.

Liang, X., and Sritharan, S., 2018. Effects of confinement in circular hollow concrete columns. Journal of Structural Engineering, 144(9), P.04018159. Doi:10.1061/(ASCE)ST.1943-541X.0002151

Lotfy, E.M., 2010. Behavior of reinforced concrete short columns with Fiber Reinforced polymers bars. International Journal of Civil and Structural Engineering, 1(3), P. 545.

Malick, P.K.,1988. Fiber reinforced composites, materials, manufacturing, and design, Marcel Dekker, New York. Doi:10.1080/10426918908956295

Mander, J.B., Priestley, M.J.N., and Park, R., 1983. Behavior of ductile hollow reinforced concrete columns. Bulletin of the New Zealand Society for Earthquake Engineering, 16(4), pp. 273-290. Doi:10.5459/bnzsee.16.4.273-290

Mirmiran, A., Yuan, W., and Chen, X., 2001. Design for slenderness in concrete columns internally reinforced with fiber-reinforced polymer bars. Structural Journal, 98(1), pp. 116-125. Doi:10.14359/10153

Mohamed, H.M., and Benmokrane, B., 2014. Design and performance of reinforced concrete water chlorination tank totally reinforced with GFRP bars: Case study. Journal of Composites for Construction, 18(1), P. 05013001. Doi:10.1061/(ASCE)CC.1943-5614.0000429

Paultre, P., Eid, R., Langlois, Y., and Lévesque, Y., 2010. Behavior of steel fiber-reinforced high-strength concrete columns under uniaxial compression. Journal of Structural Engineering, 136(10), pp. 1225-1235. Doi:10.1061/(ASCE)ST.1943-541X.0000211

Raza, A., and Ahmad, A., 2019. Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS. Advances in Civil Engineering, 2019. Doi:10.1155/2019/1745341

Rizkalla, S., Hasan, T., and Hasan, N., 2003. Design recommendation for the usage of FRPs for reinforcement and strengthening of concrete structure. Progress in Structural Engineering and Material, 6(1), pp. 18-28. Doi:10.1002/pse.139

Tobbi, H., Farghally, A.S., and Benmokrane, B., 2012. Concrete column reinforcement longitudinaly and transversaly with glass fiber-reinforced polymers bar. ACI Structural Journal, 108(6). pp. 551-558.

Zadeh, H.J., and Nanni, A., 2013. Design of RC columns using glass FRP reinforcement. Journal of Composites for Construction, 17(3), pp. 294-304. Doi:10.1061/(ASCE)CC.1943-5614.0000354

Zahn, F.A., Park, R. and Priestley, M.J.N., 1986. Design of reinforced bridge columns for strength and ductility. Rep. 86, 7.

Zakarea, A.W. and Al-Baghdadi, H.B, 2020. Experimental and numerical study on CFRP confinement square concrete compressive member subjected to compression load. Journal of Engineering, 26(4), pp. 142-180. Doi:10.31026/j.eng.2020.04.10

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.