Effect of Vegetable Oil Quenchants and Precipitation Hardening on the Mechanical Properties of Aluminum Alloy (AA2024)

محتوى المقالة الرئيسي

Hawre F. Amin
Abbas I. Khwakaram
Omer S. Mahmood
Pshtiwan M. Karim
Rekawt R. Amin

الملخص

This article demonstrates how different cooling rates and precipitation hardening affected the mechanical properties of AA2024. Three impact test samples were chosen. Solution heat treatment was conducted at 500 °C for 2 hrs., followed by quenching in three different quenching media (Sunflower Oil, Sesame Oil, and Corn Oil). As a result, the Sunflower Oil showed the lowest shock absorption rate; hence, it was chosen as the quenching medium for this study. Consequently, all samples of tensile, hardness, and impact tests were solution heat treated at 500 °C for 2 hours, then quenched in Sunflower Oil to room temperature and artificially aged at temperatures of 180°C for 1,2,4 hour, 195°C for 1, 2, 4 hour, and 210°C for 1,2,4 hour. Considerable improvements in strength and hardness were observed while decreasing the ductility Due to the production of finely dispersed grains. Precipitation hardening at 180°C for 1 hour was the overall optimum achievement, which enhanced the UTS by 28.7% to 579 MPa, compared to the as-received sample with UTS 450 MPa. While annealing has reduced the UTS by 32.7% to 303 MPa.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"Effect of Vegetable Oil Quenchants and Precipitation Hardening on the Mechanical Properties of Aluminum Alloy (AA2024)" (2024) مجلة الهندسة, 30(8), ص 85–100. doi:10.31026/j.eng.2024.08.06.

المراجع

Akande S., Ajaiyeoba O. E., Azeez T. M., Ikumapayi O. M., Akinlabi S. A., Akinlabi E.T., 2022. Investigating the precipitation hardening of 2024 Aluminium alloy under different quenching media. Materials Today: Proceedings, 6(Part 6), pp. 4271-4274. https://doi.org/10.1016/j.matpr.2022.04.775

AL-Alkawi H. J.M., Al-Fattal D. S., AL-Qaisy A. A., 2015. Effect of plasma shot peening on mechanical properties and fatigue life of AL-Alloys 2024-T3. Journal of Engineering, 21(07), pp. 59–71. https://doi.org/10.31026/j.eng.2015.07.05.

Alexopoulos N. D., Velonaki Z., Stergiou C. I., Kourkoulis S. K., 2017. Effect of ageing on precipitation kinetics, tensile and work hardening behavior of Al-Cu-Mg (2024) alloy, Materials Science and Engineering: A,700, pp. 457-467. https://doi.org/10.1016/j.msea.2017.05.090.

AL-Qaisy A. A., Hasan S. F., Mahmood N. Y., 2017. Study the Effects of Microwave furnace heat on the mechanical properties and estimated fatigue life of AA2024-T3. Journal of Engineering, 23(10), pp. 146–156. https://doi.org/10.31026/j.eng.2017.10.11.

Araghchi, M., Mansouri, H., Vafaei, R., and Guo, Y., 2018. Optimization of the mechanical properties and residual stresses in 2024 Aluminum Alloy through heat treatment. Journal of Materials Engineering and Performance, 27(7), pp. 3234-3238. https://doi.org/10.1007/s11665-018-3400-0.

Beroual S., Boumerzoug Z., Paillard P., Piron Y. B., 2019. Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys. Journal of Alloys and Compounds, pp. 1026-1035. https://doi.org/10.1016/j.jallcom.2018.12.365.

Garchani F. E. E., Lgaz H., Kaya S., Lee H. S., Ibrahim S. M., Chafiq M., Ko Y. G., Kabiri M.R., 2023. Effects of heat treatment on the corrosion behavior and mechanical properties of aluminum alloy 2024. Journal of Materials Research and Technology, 25, pp. 1355-1363. https://doi.org/10.1016/j.jmrt.2023.05.278.

Gurugubelli S. N., 2012.The Effect of ageing on impact toughness and microstructure of 2024 Al-Cu-Mg Alloy. World Academy of Science, Engineering and Technology, Open Science Index 62, International Journal of Materials and Metallurgical Engineering, 6(2), pp. 166-168. https://doi.org/10.5281/zenodo.1062046.

Jang J., Nam D. G., Park Y. H., Park I. M., 2013. Effect of solution treatment and artificial ageing on microstructure and mechanical properties of Al–Cu alloy. Transactions of Nonferrous Metals Society of China, 23(3), pp. 631-635. https://doi.org/10.1016/S1003-6326(13)62509-1.

Kayani S. H., Ha H.Y., Cho Y. H., Son H. W., Lee J. M., 2023. Dislocation-assisted localised pitting corrosion behaviour of Al-Si-Mg-Cu-Mn alloy. Corrosion Science, 221, P. 111372. https://doi.org/10.1016/j.corsci.2023.111372.

Kolar M., Pedersen K. O., Dahl S. G., Marthinsen K., 2012. Combined effect of deformation and artificial ageing on mechanical properties of Al–Mg–Si Alloy. Transactions of Nonferrous Metals Society of China, 22(8), pp. 1824-1830. https://doi.org/10.1016/S1003-6326(11)61393-9.

Kumar N.M. Siddesh, Dhruthi, G.K. Pramod, P. Samrat, M. Sadashiva, 2022. A critical review on heat treatment of Aluminium alloys. Materials Today: Proceedings, pp. 71-79. https://doi.org/10.1016/j.matpr.2021.12.586.

Li H., Xu W., Wang Z., Fang B., Song R., Zheng Z., 2016. Effects of re-ageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al–Cu–Mg alloys. Materials Science and Engineering: A, pp. 254-263. https://doi.org/10.1016/j.msea.2015.10.051.

Liang M., Chen L., Zhao G., Guo Y., 2020. Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet. Journal of Alloys and Compounds, P. 153943. https://doi.org/10.1016/j.jallcom.2020.153943.

Moy C. K.S., Weiss M., Xia J., Sha G., Ringer S. P., Ranzi G., 2012. Influence of heat treatment on the microstructure, texture, and formability of 2024 aluminium alloy, Materials Science and Engineering: A, pp. 48-60. https://doi.org/10.1016/j.msea.2012.04.113.

Onat A., 2018. Effects of artificial ageing heat treatment on mechanical properties and corrosion behaviour of AA6XXX aluminium alloys. Journal of Chemical Engineering and Materials Science, 9(2), pp. 17-23. https://doi.org/10.5897/JCEMS2018.0315.

Österreicher J.A., Nebeling D., Grabner F., Cerny A., Zickler G.A., Eriksson J., Wikström G., Suppan W., Schlögl C.M., 2023. Secondary ageing and formability of an Al-Cu-Mg alloy (2024) in W and under-aged tempers. Materials & Design, 226, P.11163, https://doi.org/10.1016/j.matdes.2023.111634.

Ozturk F., Sisman A., Toros S., Kilic S., Picu R.C., 2010. Influence of ageing treatment on mechanical properties of 6061 aluminum alloy. Materials & Design, 31(2), pp. 972-975. https://doi.org/10.1016/j.matdes.2009.08.017.

Radutoiu N., Alexis J., Lacroix L., Petit J. A., Abrudeanu M., et al. 2012. Effect of the over-ageing treatment on the mechanical properties of AA2024 aluminum alloy. Revista de chimie (chemistry magazine), pp. 1042-1045.

Radutoiu N., AlexisJ., Lacroix L., AbrudeanuM., Petit J.A., 2013. Study of the influence of the artificial ageing temperature on the AA2024 alloy microstructure. Key Engineering Materials, 550, pp.115-125.

Sadeler R., Totik Y., Gavgalı M., Kaymaz I., 2004. Improvements of fatigue behaviour in 2014 Al alloy by solution heat treating and age-hardening. Materials & Design, 25(5) pp. 439-445. https://doi.org/10.1016/j.matdes.2003.12.003.

Saillard R., Viguier B., Odemer G., Pugliara A., Fori B., Blanc C., 2018. Influence of the microstructure on the corrosion behaviour of 2024 aluminium alloy coated with a trivalent chromium conversion layer. Corrosion Science, 142, pp. 119-132. https://doi.org/10.1016/j.corsci.2018.07.007.

Shabestari S.G., Moemeni H., 2004. Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. Journal of Materials Processing Technology, s 153–154, pp. 193-198. https://doi.org/10.1016/j.jmatprotec.2004.04.302.

Shen G.T., Chen S. Y., Huang C.Y., Lin C. S., 2023. Microstructural evolution and corrosion behavior of constituent particles of AA2024-T3 Al alloy during zirconium conversion coating. Applied Surface Science, 157657. https://doi.org/10.1016/j.apsusc.2023.157657.

Singh A. K., Ghosh S., Mula S., 2016. Simultaneous improvement of strength, ductility and corrosion resistance of Al2024 alloy processed by cryoforging followed by ageing. Materials Science and Engineering: A, pp. 774-785. https://doi.org/10.1016/j.msea.2015.11.032.

SiqueiraM.L., Silva A. da., Melo M. D. L.N.M. and Rodrigues G., 2019. Mechanical properties analysis of al2024 alloy submitted to different ageing time and different cold plastic deformation degree. Materials Research, 22(4), e20180598. https://doi.org/10.1590/1980-5373-MR-2018-0598.

Siskou N., Charalampidou Ch., Alexopoulos N.D., Kourkoulis S.K., 2018. Effect of corrosion exposure on aluminum alloy 2024 for different artificial ageing conditions. Procedia Structural Integrity, 10, pp. 79-84. https://doi.org/10.1016/j.prostr.2018.09.012.

Sjölander E., Seifeddine S., 2010. The heat treatment of Al–Si–Cu–Mg casting alloys. Journal of Materials Processing Technology, 210(10), pp. 1249-1259. https://doi.org/10.1016/j.jmatprotec.2010.03.020.

Smeadă M., Stoicănescu M., Radomir I., Geamăn L., 2012. Artificial ageing of Aluminum Alloys. statistical studies of results. Procedia - Social and Behavioral Sciences, 62, pp. 881-885, https://doi.org/10.1016/j.sbspro.2012.09.148.

Staszczyk A., Sawicki J., Cieslak A. B., 2019. A study of second-phase precipitates and dispersoid particles in 2024 aluminum alloy after different ageing treatments. Materials, 12(24), P. 4168. https://doi.org/10.3390/ma12244168.

Sun L., Guo Y., Chen L., Zhao G., 2021. Effects of solution and ageing treatments on the microstructure and mechanical properties of cold rolled 2024 Al alloy sheet. Journal of materials research and technology. 12, pp. 1126-42. https://doi.org/10.1016/j.jmrt.2021.03.051.

Sun Y., Hu M., Li M., Li C., Zhu X., Xia X., Yu L., Liu Y., 2022. The effect of solution temperature on the precipitates evolution and ageing hardening response of Al-15%Mg2Si(-1%Cu) alloys. Journal of Materials Research and Technology, 17, pp. 1330-1337. https://doi.org/10.1016/j.jmrt.2022.01.094.

Sun Z., Ma Y., Ma S., Xiong H., Chen B., 2023. Mechanical properties and corrosion resistance enhancement of 2024 aluminum alloy for drill pipe after heat treatment and Sr modification. Materials Today Communications, 36, P. 106805. https://doi.org/10.1016/j.mtcomm.2023.106805.

Vladimir A. Esin, L. Briez, Mohamed Sennour, Alain Köster, E. Gratiot, et al. 2021. Precipitation-hardness map for Al–Cu–Mg alloy (AA2024-T3). Journal of Alloys and Compounds, 854, pp.157164. https://doi.org/10.1016/j.jallcom.2020.157164.

Westermann I., Pedersen K.O., Børvik T., Hopperstad O.S., 2016. Work-hardening and ductility of artificially aged AA6060 aluminium alloy. Mechanics of Materials, 97, pp. 100-117. https://doi.org/10.1016/j.mechmat.2016.02.017.

Yang Z., Banhart J., 2021. Natural and artificial ageing in aluminium alloys – the role of excess vacancies. Acta Materialia, 215, P. 117014. https://doi.org/10.1016/j.actamat.2021.117014.

Zain Al-Abideen A. A., Mohmmed J. H., Mahmood N. Y., 2017. Evaluation the mechanical properties of shot peened tig welded aluminum sheets. Journal of Engineering, 23(4), pp. 79–87. https://doi.org/10.31026/j.eng.2017.04.05.

Zheng Y., Xiao W., Ge S., Zhao W., Hanada S., Ma C., 2015. Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of Al-Si–Cu–Mg alloys. Journal of Alloys and Compounds, 649, pp. 291-296. https://doi.org/10.1016/j.jallcom.2015.07.090.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.