محاكاة ماتلاب ل ١٠٠ ميجاوات من الطاقة الشمسية الكهروضوئية في ظل ظروف مناخية مختلفة

محتوى المقالة الرئيسي

Shahad Safaa Faisal
Emad Talib Hashim

الملخص

قد أثار الطلب المتزايد على الكهرباء، إلى جانب المخاوف البيئية المتزايدة، الاهتمام بمصادر الطاقة المتجددة. وبناءً على ذلك، تقترح هذه الورقة تصميمًا جديدًا ومحاكاة وإجراءات اختبار لنظام كهروضوئي ينتج 100 ميجاوات. علاوة على ذلك، يركز هذا العمل على استكشاف كيفية تأثير المستويات المختلفة للإشعاع ودرجة الحرارة على الطاقة الناتجة للنظام. لتحسين النظام الكهروضوئي، فإنه يستخدم تقنية تتبع نقطة الطاقة القصوى (MPPT)، إلى جانب محول تعزيز DC-DC وعاكس ربط ثلاثي الطور. تعمل هذه المكونات على تعزيز جهد الخرج وتحويله إلى طاقة تيار متردد لدمجه في شبكة المرافق. في هذه الدراسة تم استخدام Block Builder للحصول على نطاق معين من الإشعاع الشمسي والحرارة بحيث يمكن معرفة كمية الطاقة الكهربائية المولدة عند أي قيمة للإشعاع والحرارة. هناك 4 حالات لمعلمات مختلفة مستخدمة في التصميم المقترح لتقييم أدائه في ظروف مختلفة فيما يتعلق بالتغيرات في الإشعاع الشمسي ودرجة الحرارة. أظهرت نتائج المحاكاة أن التصميم المقترح أنتج قوى إنتاجية مختلفة بناءً على تغيرات الإشعاع الشمسي ودرجات الحرارة.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"محاكاة ماتلاب ل ١٠٠ ميجاوات من الطاقة الشمسية الكهروضوئية في ظل ظروف مناخية مختلفة" (2025) مجلة الهندسة, 31(1), ص 98–119. doi:10.31026/j.eng.2025.01.06.

المراجع

Akhtar, M. U., and Iqbal, M. T., 2024. Modeling and simulation of grid-tied Three-Phase PV system in Lahore, Pakistan. European Journal of Electrical Engineering and Computer Science, 8(4), pp. 23-32. https://doi.org/10.24018/ejece.2024.8.1.603.

Akorede, M. F., Hizam, H., and Pouresmaeil, E., 2010. Distributed energy resources and benefits to the environment. Renewable and sustainable energy reviews, 14(2), pp. 724-734. https://doi.org/10.1016/j.rser.2009.10.025.

Al‐Nimr, M. D. A., Kiwan, S., and Sharadga, H., 2018. Simulation of a novel hybrid solar photovoltaic/wind system to maintain the cell surface temperature and to generate electricity. International Journal of Energy Research, 42(3), pp. 985-998. https://doi.org/10.1002/er.3885.

Alwash, J. H., Hassan, T. K., and Kamel, S. W. 2014. Analysis and control of PWM buck-boost AC chopper fed single-phase capacitor run induction motor. Journal of Engineering, 20(06), pp. 160-178. https://doi.org/10.31026/j.eng.2014.06.11.

Benaissa, O. M., Hadjeri, S., Zidi, S. A., and Benaissa, O. ,2017. Modeling and simulation of grid-connected PV generation system using Matlab/Simulink. International Journal of Power Electronics and Drive System (IJPEDS), 8(1), pp. 392-401. http://doi.org/10.11591/ijpeds.v8.i1.pp392-401.

Chang, R., Bai, L., and Hsu, C.-H. 2021. Solar power generation prediction based on deep learning. Sustainable energy technologies and assessments, 47(10), 101354. https://doi.org/10.1016/j.seta.2021.101354.

Chow, S. K., Lee, E. W., and Li, D. H., 2012. Short-term prediction of photovoltaic energy generation by intelligent approach. Energy and Buildings, 55(12), pp. 660-667. https://doi.org/10.1016/j.enbuild.2012.08.011.

Das, S., 2021. Short-term forecasting of solar radiation and power output of 89.6 kW solar PV power plant. Materials Today: Proceedings, 39(5), pp. 1959-1969. https://doi.org/10.1016/j.matpr.2020.08.449.

Deville, L., Theristis, M., King, B. H., Chambers, T. L., and Stein, J. S., 2024. Open‐source photovoltaic model pipeline validation against well‐characterized system data. Progress in Photovoltaics: Research and Applications, 32(5), pp. 291-303. https://doi.org/10.1002/pip.3763.

Frederiksen, C. a. F., and Cai, Z. 2022. Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. Applied Energy, 306(124), pp.118152. https://doi.org/10.1016/j.apenergy.2021.118152.

Hansen, J., Sato, M., Kharecha, P., Von Schuckmann, K., Beerling, D. J., Cao, J., Marcott, S., Masson-Delmotte, V., Prather, M. J., and Rohling, E. J., 2017. Young people's burden: requirement of negative CO 2 emissions. Earth System Dynamics, 8(3), pp. 577-616. https://doi.org/10.5194/esd-8-577-2017.

Hashim, E. T., and Abboud, A. A., 2016. Temperature effect on power drop of different photovoltaic modules. Journal of Engineering, 22(5), pp. 129-143. https://doi.org/10.31026/j.eng.2016.05.09.

Hashim, E. T., and Hussien, S. A. M., 2018. Synchronous buck converter with Perturb and Observe Maximum Power Point Tracking Implemented on a Low-Cost Arduino microcontroller. Journal of Engineering, 24(2), pp. 16-33. https://doi.org/10.31026/j.eng.2018.02.02.

Hosouli, S., Gomes, J., Loris, A., Pazmiño, I.-A., Naidoo, A., Lennermo, G., and Mohammadi, H., 2023. Evaluation of a solar photovoltaic thermal (PVT) system in a dairy farm in Germany. Solar Energy Advances, 3(2023), pp. 100035. https://doi.org/10.1016/j.seja.2023.100035.

Hu, H., Xie, N., Fang, D., and Zhang, X., 2018. The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries. Applied Energy, 211(1 February 2018), pp. 1229-1244. https://doi.org/10.1016/j.apenergy.2017.12.019.

Hussain, A., Arif, S. M., and Aslam, M., 2017. Emerging renewable and sustainable energy technologies: State of the art. Renewable and sustainable energy reviews, 71(May 2017), pp. 12-28. https://doi.org/10.1016/j.rser.2016.12.033.

Iqbal, T., Micheal, O. M., and Ogbomo, E. ,2023. Design and analysis of a hybrid power system for Port Hope Simpson, Labrador. http://dx.doi.org/10.24018/ejece.2023.7.1.487.

Islam, M. A., Kassim, N. M., Alkahtani, A. A., and Amin, N., 2021. Assessing the impact of spectral irradiance on the performance of different photovoltaic technologies. Solar Radiation-Measurement, Modeling and Forecasting Techniques for Photovoltaic Solar Energy Applications. IntechOpen. https://doi.org/10.5772/intechopen.96697.

Jayaram, K., 2021. Simulation-based three-phase single-stage grid-connected inverter using solar photovoltaics. J. Univ. Shanghai Sci. Technol, 23(5). http://doi.org/10.51201/JUSST/21/05190.

Jiang, Y., Zheng, L., and Ding, X., 2021. Ultra-short-term prediction of photovoltaic output based on an LSTM-ARMA combined model driven by EEMD. Journal of Renewable and Sustainable Energy, 13(4), pp. 046103. https://doi.org/10.1063/5.0056980.

Jung, Y., Jung, J., Kim, B., and Han, S., 2020. Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. Journal of Cleaner Production, 250(6), pp. 119476. https://doi.org/10.1016/j.jclepro.2019.119476.

Kadam, P., Lahoti, G., and Shah, U. Dynamic and compact control of PV standalone system. In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016. IEEE, pp. 1-5. https://doi.org/10.1109/ICPEICES.2016.7853454.

Konstantinou, M., Peratikou, S., and Charalambides, A. G., 2021. Solar photovoltaic forecasting of power output using LSTM networks. Atmosphere, 12(1), pp. 124. https://doi.org/10.3390/atmos12010124.

Kubba, Z., Al-Shara, K., and Al-Shakarchi, E., 2008. Computer-aided design and implementation of converter circuits applied for photovoltaic System. Journal of Engineering, 14(04), pp. 2990-3000. https://doi.org/10.31026/j.eng.2008.04.09.

Mahdavian, F., Platt, S., Wiens, M., Klein, M., and Schultmann, F., 2020. Communication blackouts in power outages: Findings from scenario exercises in Germany and France. International Journal of Disaster Risk Reduction, 46(June 2020), pp. 101628. https://doi.org/10.1016/j.ijdrr.2020.101628.

Munoz, F. D., Wogrin, S., Oren, S. S., and Hobbs, B. F., 2018. Economic inefficiencies of cost-based electricity market designs. The Energy Journal, 39(3), pp. 51-68. https://doi.org/10.5547/01956574.39.3.fmun.

Nadaleti, W. C., Dos Santos, G. B., and Lourenço, V. A., 2020. The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis. International Journal of Hydrogen Energy, 45(3), pp. 1373-1384. https://doi.org/10.1016/j.ijhydene.2019.08.199.

Patel, M., and Bohra, S. ,2023. Power management of grid-connected PV wind hybrid system incorporated with energy storage system. Future Energy, 2(3), pp. 7-19. https://doi.org/10.55670/fpll.fuen.2.3.2.

Rahman, A., Farrok, O., and Haque, M. M., 2022. Environmental impact of renewable energy source-based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161(June 2022), pp. 112279. https://doi.org/10.1016/j.rser.2022.112279.

Sharma, N., Acharya, A., Jacob, I., Yamujala, S., Gupta, V., and Bhakar, R. 2021. Major blackouts of the decade: Underlying causes, recommendations, and arising challenges. IEEE International Conference on Power Systems (ICPS), pp. 1-6. https://doi.org/10.1109/ICPS52420.2021.9670166.

Shi, J., Lee, W.J., Liu, Y., Yang, Y., and Wang, P., 2012. Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications, 48(3), pp. 1064-1069. https://doi.org/10.1109/TIA.2012.2190816.

Teyabeen, A. A., and Jwaid, A. E., 2023. Modeling, validation, and simulation of solar photovoltaic modules. Electrica, 23(1). https://doi.org/10.5152/electrica.2022.21164.

Tyagi, V., Rahim, N. A., Rahim, N., Jeyraj, A., and Selvaraj, L., 2013. Progress in solar PV technology: Research and achievement. Renewable and sustainable energy reviews, 20(April 2013), pp. 443-461. https://doi.org/10.1016/j.rser.2012.09.028.

Wang, K., Herrando, M., Pantaleo, A. M., and Markides, C. N., 2019. Techno-economic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centers. Applied Energy, 254(15 November 2019), pp. 113657. https://doi.org/10.1016/j.apenergy.2019.113657.

Wang, X.,2022. Managing the problem of too much capital: Coal power overcapacity, migrant labor sacrifice, and structural problems in contemporary Chinese political economy. Environment and Planning E: Nature and Space, 5(4), pp. 1895-1918. https://doi.org/10.1177/25148486221123418.

Wilson, G. M., Al-Jassim, M., Metzger, W. K., Glunz, S. W., Verlinden, P., Xiong, G., Mansfield, L. M., Stanbery, B. J., Zhu, K., and Yan, Y., 2020. The 2020 photovoltaic technologies roadmap. Journal of Physics D: Applied Physics, 53(49), pp. 493001. https://doi.org/10.1088/1361-6463/ab9c6a.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.