تأثير إضافة الألياف الفولاذية والزجاجية على الخصائص الميكانيكية في التبليط الخرساني
محتوى المقالة الرئيسي
الملخص
تستخدم الطرق الخرسانية في العديد من الاغراض في شبكات الطرق,ولكن تواجه العديد من المعوقات مثل التشقق نتيجة لتغير درجة الحرارة والانكماش وتحمل الجهادات المختلفة بالاضافه الى ذلك الهشاشة والضعف في مقاومة الشد والانحناء كل هذه العوامل لديها القدرة على تقليل متانة واداء التبليط. تهدف هذه الدراسة الى معرفة تأثير اضافة الاياف الفولاذية والزجاجية على الخصائص الميكانيكية للتبليط الخرساني في الشكلين المفرد والهجين والتحقق من التغيرات التي قد تطرى على خذخ الخصائص باستخدام اختبار مقاومة الانضغاط ,واختبار مقاومة الانحناء ,واختبار مقاومة الشد. تم استخدام نسبة حجمية مقدارها 1% في كلا المزيجين المفرد والهجين, حيث تم تم استخدام 1% نسبة حجمية من الاياف الفولاذ وكذلك نفس النسبة من الاياف الزجاجية بالنسبة الى الخلطات المفردة.بينما تم استخدام هذه النسبة في الخلطات الهجينه بثلاث اشكال مختلفة هي (SF0.75%+GF0.25%,SF0.25%+GF0.75%) وكذلك(SF0.5%+GD0.5%) تم اجراء هذه الاختبارات بثلاثة اعمار مختلفة (7,28,90)يوم , واضهرت جميع هذه الاختبارات ان المزيج الذي يحتوي على الاياف الفولاذية هو اكثر فعالية سواء كان في الخلطات المفرده او الهجينة فقد حسن بشكل كبير الخصائص الميكانيكية خاصة في اختبارات الانحناء والشد مما أدى الى زيادات تقارب الضعف مقارنة بالألياف الزجاجية. تظهر النتائج ان اضافة الألياف الفولاذية والزجاجية يحسن بشكل كبير الخصائص الميكانيكية مما يعزز من مقاومة التشقق ويزيد عمر الطريق,ويقلل تكاليف الصيانة.
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
AASHTO M 43, 2005. Standard Specification for Sizes of Aggregate for Road and Bridge Construction (M 43-05). American Association of State Highway and Transportation Officials
AASHTO T 198, 2022. Standard Method of Test for Splitting Tensile Strength of Cylindrical Concrete Specimens. American Association of State Highway and Transportation Officials
AASHTO T 22, 2020. Compressive strength of concrete cylinders. American Association of State Highway and Transportation Officials T 22.
AASHTO T 27, 1993. Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates (T 27-93).American Association of State Highway and Transportation Officials .
AASHTO T 290, 2022. Standard Method of Test for Determining Water-Soluble Sulfate Ion Content in Soil AASHTO T 290. American Association of State Highway and Transportation Officials
AASHTO T 85, 2022. Standard Method of Test for Specific Gravity and Absorption of Coarse Aggregate. American Association of State Highway and Transportation Officials
ACI 544.4R, 2015. Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete. Farmington Hills, MI: American Concrete Institute.
Ahmed, M.F., 2021. Utilization of Iraqi metakaolin in special types of concrete: A review based on national research. Journal of Engineering, 27(8), pp.80-98. https://doi.10.31026/j.eng.2021.08.06.
Al Fuhaid, A. F., Arifuzzaman, M., & Gul, M. A., 2022. Application of the mechanistic empirical pavement design guide software in Saudi Arabia. Applied Sciences, 12(16), 8165. https://doi.org/10.3390/app12168165.
Al-Quraishi, H., Lafta, M.J., and Abdulridha, A.A., 2018. Direct shear behavior of fiber reinforced concrete elements. Journal of Engineering, 24(1), pp.1-18. https://doi.org/10.31026/j.eng.2018.01.16
Al-Rousan, E.T., Khalid, H.R., and Rahman, M.K., 2023. Fresh, Mechanical, and durability properties of basalt fiber-reinforced concrete (BFRC): A review. Developments in the Built Environment, 14, 100155. https://doi.10.1016/j.dibe.2023.100155.
American Association of State Highway and Transportation Officials (AASHTO), 2020. T 97: Standard method of test for flexural strength of concrete beams. AASHTO.
ASTM C1116/C1116M, 2007, Standard Specification for Fiber-Reinforced Concrete. https://doi.10.1520/C1116_C1116M-07.
ASTM C150/C150M, 2022, Standard Specification for Portland Cement. West Conshohocken, PA: ASTM International. https://doi.10.1520/C0150_C0150M-22.
ASTM C293/C293M, 2018, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). https://doi.10.1520/C0293_C0293M-18.
ASTM C39/C39M, 2021, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. https://doi.10.1520/C0039_C0039M-21.
ASTM C496/C496M, 2017, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. https://doi.10.1520/C0496_C0496M-17.
ASTM C566, 1997, Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying. https://doi.10.1520/C0566-97.
ASTM C78/C78M, 2023, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading).
Bentur, A. and Mindess, S., 2007. Fibre Reinforced Cementitious Composites. 2nd ed. CRC Press.
Deshmukh, A., Rabbani, A., and Dhapekar, N.K., 2017. Study of rigid pavements – Review. International Journal of Civil Engineering and Technology, 8(6), pp.147-152. http://doi.org/10.34218/IJCIET.8.6.2017.018.
ERDC, 2010. Army Engineer Research and Development Center . PCASE Help Documentation. Available at: https://transportation.erdc.dren.mil/pcase/help.aspx
European Committee for Standardization (CEN), 2008. EN 15422: 2008, Specification for Polymer Modified Bitumens (PMB). Brussels: CEN.
European Federation of Specialist Construction Chemicals and Concrete Systems (EFNARC), 2005. Specifications and Guidelines for Steel Fiber Reinforced Concrete. Surrey: EFNARC.
Fasasi, M.O., 2024. Analysis of timbercrete: Sawdust-infused concrete mixtures. Open Journal of Environmental Research, 5(1), pp. 1–13. https://doi.org/10.52417/ojer.v5i1.591.
Golewski, G.L., 2023. The Phenomenon of cracking in cement concretes and reinforced concrete structures: the mechanism of cracks formation, causes of their initiation, types, and places of occurrence, and methods of detection—A review. Buildings, 13(3), p.765. https://doi.10.3390/buildings13030765.
Hassouna, F.M.A., Jung, Y.W., 2020. Developing a higher performance and less thickness concrete pavement: Using a nonconventional concrete mixture. Advances in Civil Engineering 2020, 8822994. https://doi.org/10.1155/2020/8822994 .
Hussain, I., Ali, B., Akhtar, T., & Jameel, M. S., 2020. Comparison of mechanical properties of concrete and design thickness of pavement with different types of fiber reinforcements (steel, glass, and polypropylene). Case Studies in Construction Materials, 13, e00429. https://doi.org/10.1016/j.cscm.2020.e00429.
Hussein, A.H., and Al-Zuhairi, A., 2013. Estimation of flexural strength of plain concrete from ultrasonic pulse velocity. Journal of Engineering, 19(2), pp.1-9. https://doi.org/10.31026/j.eng.2013.02.03
Kosteel, 2023. BUNDREX® Steel Fiber Product Line. [Online]. Available at: www.kosteel.co.kr.
Labib, W.A., 2016. Fibre reinforced cement composites. In Cement-Based Materials, Intech Open.
https://doi.10.5772/intechopen.75102.
Li, V.C., 2012. Can concrete be bendable? the notoriously brittle building material may yet stretch instead of breaking. American Scientist, 100(6), pp.484-493. https://doi.org/10.1511/2012.99.484.
Ma, J., Yuan, H., Zhang, J., and Zhang, P., 2024. Enhancing concrete performance: A comprehensive review of hybrid fiber reinforced concrete. Structures, p.106560. https://doi.org/10.1016/j.istruc.2024.106560
More, F.M.D.S., and Subramanian, S.S., 2022. Impact of fibres on the mechanical and durable behaviour of fibre-reinforced concrete. Buildings, 12(9), 1436. https://doi.10.3390/buildings12091436.
Oscete Construction Products, 2020. Oscete 12mm HP Fibre: Alkali Resistant Glass Fibre Product Data Sheet. [Online]. Available at: https://www.oscrete.com.
Pakravan, H.R., Latifi, M., and Jamshidi, M., 2017. Hybrid short fiber reinforcement system in concrete: A review. Construction and Building Materials, 142, pp.280-294. https://doi.10.1016/j.conbuildmat.2017.03.059.
Pierce, L.M. and McGovern, G., 2014. Implementation of the AASHTO mechanistic-empirical pavement design guide and software (No. Project 20-05, Topic 44-06). https://doi.org/10.17226/22406.
Rangelov, M., Nassiri, S., & Englund, K., 2020. Life cycle assessment of pervious concrete pavements reinforced by recycled carbon fiber composite elements. Advances in Civil Engineering Materials. https://doi.org/10.1201/9781003092278-45.
SCRB, 2003. General Specifications for Roads and Bridges. Section R/10, State Corporation for Roads and Bridges Revised Edition. Iraq.
Shakir, H.M., Al-Azzawi, A.A., and Al-Tameemi, A.F., 2022. Nonlinear finite element analysis of fiber reinforced concrete pavement under dynamic loading. Journal of Engineering, 28(2), pp.81-98. https://doi.10.31026/j.eng.2022.02.06.
Sika Corporation, 2022. Sika ViscoCrete-171 Precast Product Data Sheet. [Online]. Available at: https://irq.sika.com.
Suja, A.C.A., and Marliyas, M.M., 2016. Identification of problems in rigid pavements in ampara district and proposed solutions. Conference Paper, South Eastern University of Sri Lanka.
Taher, S.A., Alyousify, S., and Hassan, H.J.A., 2020. Comparative study of using flexible and rigid pavements for roads: A review. Journal of University of Duhok, 23(2), pp.222-234. https://doi.10.26682/csjuod.2020.23.2.18.
Vairagade, V.S., and Dhale, S.A., 2023. Hybrid fiber reinforced concrete – A state of the art review. Hybrid Advances, 3, p.100035. https://doi.10.1016/j.hybadv.2023.100035.
Zhang, P., Han, S., Ng, S., Wang, X.-H., 2018. Fiber‐reinforced concrete with application in civil engineering. Advances in Civil Engineering 2018, 1698905. https://doi.org/10.1155/2018/1698905