النمذجة الرياضية للعلاج الكيميائي للأورام باستخدام نظام التسريب المستمر للأدوية باستخدام نظام أسي

محتوى المقالة الرئيسي

Sokaina Sabah Hassan
Hayder M. Al-Saedi

الملخص

نقدم إطارًا نظريًا يعتمد على النمو الأسّي وحركية ميكايليس-مينتن لوصف التفاعل بين كثافة الورم وتركيز الدواء، من خلال مضخة التسريب. وفقًا لحركية ميكايليس-مينتن، يزداد معدل نمو الأورام مع توفر الأدوية فقط حتى نقطة معينة. يتميز العلاج الكيميائي للسرطان باستخدام مضخة التسريب المستمر بميزة تحقيق تركيزات كبيرة من الدواء في موقع الورم مع تقليل الآثار الضارة على بقية الجسم، على النقيض من الطرق التقليدية. يحتوي النموذج في هذا العمل على جوانب النمو الأسّي، والتي تغطي طريقة لتحديد كثافة الورم وتركيزات الأدوية التي ستقضي على الورم. يتم إجراء تحليل الاستقرار من خلال حل المعادلات غير الخطية وإيجاد نقاط مستقرة وغير مستقرة، حيث تمثل إحداثيات النقاط المستقرة كثافة الورم وكمية الدواء. يتم توفير استقرار نقطة التوازن للنموذج وأمثلة رقمية توضيحية لإظهار دقة النموذج.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"النمذجة الرياضية للعلاج الكيميائي للأورام باستخدام نظام التسريب المستمر للأدوية باستخدام نظام أسي" (2025) مجلة الهندسة, 31(6), ص 149–172. doi:10.31026/j.eng.2025.06.08.

المراجع

Anand, U., Dey,A., Chandel,A., Sanyal,R., Mishra,A. and Pandey,D., 2022. Cancer chemotherapy and Beyond Current status, drug candidates, associated risks, and progress in targeted therapeutics. Genes & Diseases, 10(4), pp. 1367-1401. https://doi.org/10.1016/j.gendis.2022.02.007.

Aroesty, J., Lincoln, T. Shapiro, N. and Boccia, G., 1973. Tumor growth and chemotherapy: Mathematical methods, computer simulations, and experimental foundations. Mathematical Biosciences, 17(3), pp. 243–300. https://doi.org/10.1016/0025-5564(73)90072-2.

Baskar, R. Lee, K. Yeo, R. and Yeoh, K., 2012. Cancer and radiation therapy: Current advances and future directions. International Journal of Medical Sciences, 9(3), pp. 193–199. https://doi.org/10.7150/ijms.3635.

Berger, T. Wen, p. Melanie, L. and Chukwueke, U., 2022. Classification of central nervous system tumors and implications for therapy for adult-type gliomas: A review. JAMA Oncology, 8(10), pp. 1493–1501. https://doi.org/10.1001/jamaoncol.2022.2844.

Blackshear, P.J. Rohde, T. D. Prosl, F. and Buchwald, H., 1979. The implantable infusion pump: a new concept in drug delivery. Medical Progress Through Technology, 6(4), pp. 149–161 https://pubmed.ncbi.nlm.nih.gov/160505/.

Brenner, M.W., Holsti, L.R. and Perttala, Y., 1967. The study by graphical analysis of the growth of human tumors and metastases of the lung. British Journal of Cancer, 21(1), pp. 1–13. https://doi.org/10.1038/bjc.1967.1.

Brunetkin, O., Maksymova, O., and Trishyn, F., 2018. Development of the method for reducing a model to the nondimensionalized form. Eastern-European Journal of Enterprise Technologies, 93(4). 33. http://dx.doi.org/10.15587/1729-4061.2018.132562.

Conejo, A.N., 2021. Fundamentals of Dimensional Analysis. Singapore, Springer. https://doi.org/10.1007/978-981-16-1602-013.

Dibrov, B. Zhabotinsky, A. Neyfakh, Y. Orlova, M.P. and Churikova, L.I., 1985. Mathematical model of cancer chemotherapy. Periodic schedules of phase-specific cytotoxic-agent administration increase the selectivity of therapy. Mathematical Biosciences, 73(1), pp. 1–31. https://doi.org/10.1016/0025-5564(85)90073-2.

Edelstein-Keshet, L., 2005. Mathematical models in biology. New York: The Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719147.ch9.

Ghaffari, A., Lasemi, N., 2015. New method to examine the stability of equilibrium points for a class of nonlinear dynamical systems. Nonlinear Dynamics. 79(4), pp. 2271–2277. https://doi.org/10.1007/s11071-014-1809-z.

Hartman, P., 1960. A lemma in the theory of structural stability of differential equations. Proceedings of the American Mathematical Society, 11(4), pp. 610–620. https://doi.org/10.1090/S0002-9939-1960-0121542-7.

Hassan, S.S., Al-Saedi, H.M., 2024. Comparative study of tumor growth based on single species models. BIO Web of Conferences, 97(1), 00118. https://doi.org/10.1051/bioconf/20249700118.

Hassan, S.S., Al-Saedi, H.M., 2025. Mathematical modelling of tumour chemotherapy by continuous infusion drug.

Commun. Math. Biol. Neurosci., 2025, pp. 1–25. https://doi.org/10.28919/cmbn/8970.

Mayla,D., Joabe,L.and Gustavo, A., 2024. Precision and reliability study of hospital infusion pumps: A systematic review. BioMedical Engineering, 22, 26 (2023). https://doi.org/10.1186/s12938-023-01088-w.

Jawad, S. Winter, M. Rahman, Z. Al-Yasir, Y. and Anwar, Z., 2023. Dynamical behavior of a cancer growth model with chemotherapy and boosting of the immune system. Mathematics, 11(2), 406. https://doi.org/10.3390/math11020406.

Jones, R., 1987. Application of optimal control theory in biomedicine. George W. Swan. Automatica, 23(1), pp. 130–131. https://doi.org/10.1016/0005-1098(87)90126-9.

Keefe, D, Bateman, E., 2012. Tumor control versus adverse events with targeted anticancer therapies. Nature Reviews Clinical Oncology, 9(2), pp. 98–109. https://doi.org/10.1038/nrclinonc.2011.192.

Kenakin, T.P., 2012. Pharmacology in Drug Discovery. Boston. Academic Press. ISBN- ‎ 9780123848567. https://doi.org/10.1016/B978-0-12-384856-7.00003-3.

Kravaris, C., Kookos, I.K., 2021. Understanding Process Dynamics and Control. Cambridge: Cambridge University Press. ISBN- 9781107035584. https://doi.org/10.1017/9781139565080.

Ledzewicz, U., Schättler, H., 2021. Combination of antiangiogenic treatment with chemotherapy as a multi-input optimal control problem. Mathematical methods in the applied sciences. 45(5), pp. 3058-3082. https://doi.org/10.1002/MMA.7977.

Leskovac, V., 2003. Comprehensive enzyme kinetics. New York . Kluwer Academic/Plenum Pub, ISBN- 9780306483905. http://archive.org/details/comprehensiveenz0000lesk.

Liu, H.Y., Yang, H.L. and Yang, L.G., 2021. Dynamics analysis in a tumor-immune system with chemotherapy. Chinese Physics B, 30(5), 058201. https://doi.org/10.1088/1674-1056/abcf49.

Liu, Z., Yang, C., 2014. A mathematical model of cancer treatment by radiotherapy. Computational and Mathematical Methods in Medicine, 172923. https://doi.org/10.1088/1674-1056/abcf49.

Malinzi, J., Basita, K., Padidar, S. and Adeola, H., 2021. Prospect for application of mathematical models in combination cancer treatments. Informatics in Medicine Unlocked, 23(1), 100534. https://doi.org/10.1016/j.imu.2021.100534.

Matthias, H., Christian, V., 2014. Linearization of time-varying nonlinear systems using a modified linear iterative method. IEEE Transactions on Signal Processing, 62(10), pp. 2566-2579. IEEE. http://dx.doi.org/10.1109/TSP.2014.2311965 .

Michaelis, L., 1925. Contribution to the theory of permeability of membranes for electrolytes. Journal of General Physiology, 8(2), pp. 33–59. https://doi.org/10.1085/jgp.8.2.33.

Mitlin, V., 1993. Nonlinear Dynamics of Reservoir Mixtures. Boca Raton: CRC Press. ISBN-9781003210344. https://doi.org/10.1201/9781003210344.

Mohsen, A.A., Naji, R.K., 2022. Stability and bifurcation of a delay cancer model in the polluted environment. Advances in Systems Science and Applications, 22(3), pp. 1–17. https://doi.org/10.25728/assa.2022.22.3.983.

Newton, C.M., 1980. Biomathematics in oncology: Modeling of cellular systems. Annual Review of Biophysics and Bioengineering, 9(1), pp. 541–579. https://doi.org/10.1146/annurev.bb.09.060180.002545.

Padmanabhan, R., Meskin, N. and Moustafa, AE.A., 2021. Chemotherapy Models. In:Mathematical Models of Cancer and Different Therapies. Singapore: Springer. ISBN-978-981-15-8639-2. https://doi.org/10.1007/978-981-15-8640-8_3.

Pérez, J.F.S., Conesa, M. Alhama, I. Alhama, F. and Cánovas, M., 2017. Searching fundamental information in ordinary differential equations. Plos one, 12(10), e0185477. https://doi.org/10.1371/journal.pone.0185477.

Sharma, R., Sharma, S., 2024. Physiology, Blood Volume. Treasure Island (FL): StatPearls Publishing. PMID-30252333. http://www.ncbi.nlm.nih.gov/books/NBK526077/.

Sharpe, S., Dobrovolny, H.M., 2021. Predicting the effectiveness of chemotherapy using stochastic ODE models of tumor growth, Communications in Nonlinear Science and Numerical Simulation. 101(1), 105883. https://doi.org/10.1016/j.cnsns.2021.105883.

Tschoegl, N.W., 2000. Fundamentals of Equilibrium and Steady-State Thermodynamics. Netherlands. ISBN-978-0-444-50426-5. https://doi.org/10.1016/B978-0-444-50426-5.X5000-9.

Wood, J.H., Thakker, K.M., 1982. Michaelis-Menten absorption kinetics in drugs: Examples and implications. European Journal of Clinical Pharmacology, 23(2), pp. 183–188. https://doi.org/10.1007/BF00545976.

Zheng, Z. Chou, C. YI, T. and Nie, Q., 2011. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical biosciences, and engineering . 8(4), pp. 1135–1168.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.