تقدير جودة المياه على طول نهر دجلة، العراق: نهج جديد باستخدام خوارزمية البحث الجاذبي والشبكات العصبية الاصطناعية

محتوى المقالة الرئيسي

Sura Mohammed Al-Hazzaa
Ali Omran Al-Sulttani

الملخص

تعتبر جودة مياه الشرب من بين القضايا الأكثر إلحاحًا على مستوى العالم. وقد تم التعرف على هذه القضية على أنها تحدٍ كبير للاستخدامات الصناعية والزراعية، فضلاً عن الحفاظ على جودة المياه ضمن المستويات الموصى بها للشرب. كانت الغاية من هذه الدراسة هي التنبؤ بجودة مياه الشرب على طول نهر دجلة (العراق). تم جمع 575 عينة من تسع محطات واستخدامها في النمذجة. تم تصنيف جودة المياه وفقًا لتوصيات منظمة الصحة العالمية (WHO) باستخدام الطريقة الحسابية المعتمدة عمومًا، وهي مؤشر جودة المياه (WQI). استنادًا إلى تركيزات أحد عشر معلمة (BOD، Ca، Cl، EC، HCO3، K، Mg، Na، NO3، pH، SO4، وTDS)، تم حساب مؤشر جودة المياه لجميع العينات. أظهرت النتائج أن جودة المياه تتغير وفقًا لظروف العينات أيضًا. في هذه الدراسة، تم تطوير نموذج تنبؤي جديد يستخدم خوارزمية البحث الجاذبي (GSA) كأداة تحسين هيوريستية للتنبؤ بمؤشر جودة المياه في المنطقة المدروسة. أظهر تقييم النموذج أن النهج القائم على GSA يتمتع باستقرار استثنائي (المتوسط = 1.04، الانحراف المعياري = 0.109، معامل الاختلاف = 10.48%)، مما يجعله مثاليًا للأداء المتسق. بينما أظهرت النماذج الأخرى دقة أعلى، إلا أنها أظهرت أيضًا تباينًا أكبر في نتائجها، مما يضع نموذج GSA كخيار مفضل في السيناريوهات التي تعطي الأولوية للاستقرار والموثوقية في التنبؤات.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"تقدير جودة المياه على طول نهر دجلة، العراق: نهج جديد باستخدام خوارزمية البحث الجاذبي والشبكات العصبية الاصطناعية" (2025) مجلة الهندسة, 31(9), ص 106–119. doi:10.31026/j.eng.2025.09.07.

المراجع

Abbas, S.H., Khudair, B.H., Jaafar, M.S., 2019. River water salinity impact on drinking water treatment plant performance using artificial neural network. Journal of Engineering, 25(8), pp. 149-159. https://doi.org/10.31026/j.eng.2019.08.10.

Abdullah, S., Ankush, M.A., Ahmadifard, N., Kangarloei, B.A., Miryaghoubzadeh, M., 2024. Assessment of the water quality index for the Tigris River in Southeastern Iraq. Mesopotamian Journal of Marine Sciences, 39(1), pp. 71-82. https://doi.org/10.58629/mjms.v39i1.36.

Adamo, N., Al-Ansari, N., Sissakian, V.K., 2020. Global climate change impacts on Tigris-Euphrates Rivers basins. Journal of Earth Sciences and Geotechnical Engineering, 10(1), pp. 49-98. https://doi.org/10.58629/mjms.v39i1.361.

Ahmed, W., Mohammed, S., El-Shazly, A., Morsy, S., 2023. Tigris River water surface quality monitoring using remote sensing data and GIS techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 26(3), pp. 816-825. https://doi.org/10.1016/j.ejrs.2023.09.001.

Ahsan, A., Ahmed, T., Uddin, M.A., Al-Sulttani, A.O., Shafiquzzaman, M., Islam, M.R., Ahmed, M.S., Alamin, Mohadesh, M., Haque, M.N., 2023. Evaluation of water quality index (WQI) in and around Dhaka city using groundwater quality parameters. Water, 15(14), PP. 2666. https://doi.org/10.3390/w1514266.

Al-Ansari, N., 2013. Management of water resources in Iraq: Perspectives and prognoses. Engineering, 5(6), pp. 667-684. https://doi.org/10.4236/eng.2013.58080.

Al‑Ansari, N., Ewaid, S. H., Chabuk, A., Abed, S., Salim, M., Laue, J., and Salih, R., 2024. Tigris River water quality quantifying using the Iraq Water Quality Index (IraqWQI) and some statistical techniques. Engineering, 16, pp. 149–166. https://doi.org/10.4236/eng.2024.166012.

Al-Ansari, N., Ali, A., Knutsson, S., 2014. Present conditions and future challenges of water resources problems in Iraq. Journal of Water Resource and Protection, 6(12), pp. 1066-1098. https://doi.org/10.4236/jwarp.2014.612102.

Al-Jawadi, A.S., Al-Abbasi, M.W., Al Jubouri, K.K., 2023. Sustainability of the Tigris River between environmental conditions and oppressive quarrying in Northern Iraq. In IOP Conference Series: Earth and Environmental Science. pp. 012017. IOP Publishing. https://doi.org/10.1088/1755-1315/1202/1/012017.

Al-Maliki, L.A., Al-Mamoori, S.K., Al-Ansari, N., El-Tawel, K., Comair, F.G., 2022. Climate change impact on water resources of Iraq (a review of literature). In IOP Conference Series: Earth and Environmental Science. PP. 012025. IOP Publishing. https://doi.org/10.1088/1755-1315/1120/1/012025.

Al-Mousawey, H.J., Abed, B., 2023. Water quality assessment of Al-Najaf City potable water network. Journal of Engineering, 29(04), pp. 14-29. https://doi.org/10.31026/j.eng.2023.04.02.

Al-Sulttani, A.O., Ali, S.K., Abdulhameed, A.A. and Jassim, D.T., 2024. Artificial neural network assessment of groundwater quality for agricultural use in Babylon City: An evaluation of salinity and ionic composition. Int. J. Des. Nat. Ecodyn, 19(1), pp. 329-336.

Al-Zaidy, H.S.A., AL-Thamiry, H.A.K., 2020. Prediction capacity of Euphrates River at Assamawa City. Journal of Engineering, 26(4), pp. 111-122. https://doi.org/10.31026/j.eng.2020.04.08.

Bui, D.T., Khosravi, K., Tiefenbacher, J., Nguyen, H., Kazakis, N., 2020. Improving prediction of water quality indices using novel hybrid machine-learning algorithms. Science of the Total Environment, 721, PP. 137612. https://doi.org/10.1016/j.scitotenv.2020.137612.

Deo, R.C., Şahin, M., 2016. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environmental monitoring and assessment, 188, pp. 1-24. https://doi.org/10.1007/s10661-016-5094-9.

Fahimi, F., Yaseen, Z.M., El-shafie, A., 2017. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theoretical and applied climatology, 128, pp. 875-903. https://doi.org/10.1007/s00704-016-1735-8.

Frank, I.E., Todeschini, R., 1994a. The data analysis handbook. Elsevier. 008086841X-13: 008086841X.

Ghorbani, F., Nezamabadi, P.H., 2012. On the convergence analysis of gravitational search algorithm. Journal of Advances in Computer Research, 3(2), pp. 45-51

Hashim, R.A., 2022. An ecological comparison of benthic invertebrate communities between sewage and Tigris River Water–Baghdad. Asian Journal of Water, Environment and Pollution, 19(5), pp. 113-119. https://doi.org/10.3233/AJW220078.

Hassan, M.A., 2015. Environmental study of groundwater in southwest of Baghdad, Yusufiyah using GIS. Iraqi Journal of Physics, 13(27), pp. 36-49. https://www.iraqoaj.net/iasj/article/113320.

Issa, I.E., Al-Ansari, N., Sherwany, G., Knutsson, S., 2014. Expected future of water resources within Tigris–Euphrates rivers basin, Iraq. Journal of Water Resource and Protection, 6(5), pp. 421-432. https://doi.org/10.4236/jwarp.2014. 65042.

Jaafer, N.S., Al-Mukhtar, M., 2024. Prediction of water quality parameters of Tigris River in Baghdad City by using artificial intelligence methods. Ecological Engineering & Environmental Technology, 25, https://doi.org/10.12912/27197050/189572 .

Khudair, B.H., 2013. Assessment of water quality index and water suitability of the Tigris River for drinking water within Baghdad City, Iraq. Journal of Engineering, 19(06), pp. 764–773. https://doi.org/10.31026/j.eng.2013.06.08.

Kouadri, S., Pande, C.B., Panneerselvam, B., Moharir, K.N., Elbeltagi, A., 2022. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environmental Science and Pollution Research, pp. 1-25. https://doi.org/10.1007/s13201-022-01590-x

National Center of Water Resources Management (NCWRM), 2017. Water Quality Study of Main Rivers in Iraq, Ministry of Water Resources, Iraq, Annual Internal Report. National Oceanic, and Atmospheric Administration.

Ojugo, A., Emudianughe, J., Yoro, R., Okonta, E., Eboka, A., 2013. A hybrid artificial neural network gravitational search algorithm for rainfall runoffs modeling and simulation in hydrology. Prog Intell Comput Appl, 2(1), pp. 22-33. https://doi.org/10.4156/pica.vol2.issue1.2.

Pimentel-Gomes, F., 2000. Course of experimental statistics. Piracicaba: FEALQ, 15.

Rahi, K.A., Halihan, T., 2018. Salinity evolution of the Tigris River. Regional Environmental Change, 18(7), pp. 2117-2127. https://doi.org/10.1007/s10113-018-1344-4.

Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2009. GSA: A gravitational search algorithm. Information sciences, 179(13), pp. 2232-2248. https://doi.org/10.1016/j.ins.2009.03.004.

Sabri, N.M., Puteh, M., Mahmood, M.R., 2013. An overview of gravitational search algorithm utilization in optimization problems. In 2013 IEEE 3rd International Conference on System Engineering and Technology. pp. 61-66. IEEE.

Sharma, A., 2016. Metaheuristic approaches for adaptive array signal processing in smart antenna. GB Pant University of Agriculture and Technology, Pantnagar-263145 (Uttarakhand).

Singh, K.P., Basant, A., Malik, A., Jain, G., 2009. Artificial neural network modeling of the river water quality—a case study. Ecological modelling, 220(6), pp. 888-895. https://doi.org/10.1016/j.ecolmodel.2009.01.004 .

Smith, G.N., 1986. Probability and statistics in civil engineering. Collins professional and technical books, 244. https://doi.org/10.3208/sandf.38.4_95.

Xu, J., Xu, Z., Kuang, J., Lin, C., Xiao, L., Huang, X., Zhang, Y., 2021. An alternative to laboratory testing: Random forest-based water quality prediction framework for inland and nearshore water bodies. Water, 13(22), PP. 3262. https://doi.org/10.3390/w13223262 .

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.