التقييم الزلزالي ثنائي الأبعاد للخصائص البترفيزيائية لتكوين يمامة في حقل الناصرية النفطي، جنوب العراق
محتوى المقالة الرئيسي
الملخص
تلعب بيانات الانعكاس الزلزالي دورًا أساسيًا في استكشاف الموارد، إذ توفر صورًا دقيقة لباطن الأرض تكشف التراكيب الجيولوجية التي قد تحتوي على النفط والغاز والمعادن. وعند دمجها مع سجلات الآبار، تتيح هذه البيانات تقييمًا زلزاليًا وبتروفزيائيًا يساعد على تقليل مخاطر الحفر وزيادة الإنتاجية. في خزان اليمامة، جرى توصيف الخزان باستخدام سجلات خمس آبار وبيانات المسح الزلزالي لحقل الناصرية في محافظة ذي قار، والتي تمت معالجتها ببرامج شلمبرجير. ساعدت سجلات أشعة غاما والمقاومية العميقة في تحديد وتسلسل الطبقات، بينما ربطت السيزموجرامات التركيبية قمم الخزان بالبيانات الزلزالية. كما مكّنت المقارنات بين الآبار من تتبع الكربونات الخازنة ومسارات هجرة الهيدروكربونات.
أظهرت النماذج وجود تباينات أفقية ورأسية في خصائص الخزان، ما يعكس عدم التجانس واللاتماثل، وحددت مناطق واعدة (sweet spots). كما برزت الوحدتان YB3 وYC كوحدات إنتاج رئيسية بالاعتماد على بيانات الآبار المحللة ببرامج Techlog وPetrel وKingdom وDidger. وتؤكد النتائج أن الطرق الزلزالية تعزز نجاح الاستكشاف وتوجّه عمليات تطوير واسترداد الهيدروكربونات مستقبلًا.
##plugins.themes.bootstrap3.displayStats.downloads##
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Abd Ali L.H., and Hamd-Allah S.M., 2025. Petrophysical evaluation by integrating AI and HFU Methods. A case study of the Mishrif Reservoir in Southern Iraq. Journal of Engineering, 31(9). https://doi.org/10.31026/j.eng.2025.09.11
Al-Ameri, T.K., Al-Mimar, H.S., Zumberge, J., 2015. Petroleum system modeling and risk assessments of the Ad’daimah oil field: A case study from Mesan Governorate, South Iraq. Arabian Journal of Geosciences 8, pp. 5739–5766. https://doi.org/10.1007/s12517-014-1599-0
Al-Iessa, I.A. and Zhang, W.Z., 2023. Facies evaluation and sedimentary environments of the Yamama Formation in the Ratawi oil field, South Iraq. Scientific Reports journal, 13(1), pp. 1–19. https://doi.org/10.1038/s41598-023-32342-9.
Aljibouri, R. D., Al-Hakeem, N. S. A., & Nasser, M. E., 2022. 3D geological modeling for Yamama reservoir in Al-Nasiriyah oil field, Southern Iraq. International Journal of Health Sciences, 6(S6), pp. 8949–8962. https://doi.org/10.53730/ijhs.v6nS6.12376
Aljibouri, R.D., Al-Hakeem, N.S.A., Nasser, M.E., 2022. 3D geological modeling for the Yamama reservoir in Al-Nasiriyah oil field, Southern Iraq. International Journal of Health Sciences 6, pp. 8949–8962. https://doi.org/10.53730/ijhs.v6nS6.12376
Al-Mafraji, T.G.Z., Al-Zaidy, A.A.H., 2019. Microfacies architecture and stratigraphic development of the Yamama Formation, Southern Iraq. Iraqi Journal of Science 60, pp. 1115–1128. https://doi.org/10.24996/ijs.2019.60.5.20
Alsadi, H.N., 2017. Interpretation of seismic reflection data. In: Seismic Hydrocarbon Exploration. Advances in Oil and Gas Exploration & Production. Springer, Cham, pp. 301–320 https://doi.org/10.1007/978-3-319-40436-3_12
Alshammary, Z.S., Al‑Khafaji, A.J., Al‑Najm, F.M., 2024. Characterization of the Yamama Reservoir in the Abu‑Amood Oil Field, Nasiriya, Southern Iraq. Iraqi Geological Journal, 57, pp. 14–28. https://doi.org/10.46717/igj.57.1C.2ms-2024-3-14
Aqrawi, A.A., 1998. Paleozoic stratigraphy and petroleum systems of the western and southwestern deserts of Iraq. Geo Arabia, 3(2), pp. 229-248. https://doi.org/10.2113/geoarabia0302229
Asquith, G. and Krygowski, D., 2004. Basic well log analysis. American Association of Petroleum Geologists (AAPG), 16 Tulsa, pp. 31-34. https://doi.org/10.1306/Mth16823
Bacon, M., Simm, R., and Redshaw, T., 2007. 3-D seismic interpretation. Cambridge University Press, Cambridge, P. 234.
Badley, M.E., 1985. Practical seismic interpretation. International Human Resources Development Corporation, Boston, P. 266.
Brown, A.R., 2011. Interpretation of three-dimensional seismic data. (AAPG) American Association of Petroleum Geologists Memoir, 42 (9), pp. 1–541. https://doi.org/10.1306/M4271346
Buday, T., 1980. The regional geology of Iraq: stratigraphy and paleogeography. State Organization for Minerals, Directorate General for Geological Survey and Mineral Investigations, Dar AL-Kuttib Publication House, 1, pp. 242–245.
Catuneanu, O., 2022. Principles of Sequence Stratigraphy. Elsevier Science, Amsterdam, Second edition, 375. https://doi.org/10.1016/C2009-0-19362-5
Cofen JA., 1984. Interpreting seismic data. Publishing Company, Oklahoma, 2, pp. 39–118
Crain, E.R., 1986. The Log Analysis Handbook. Penn-Well Publishing Company, Tulsa, P. 700.
Edgar, J. A., and Van der Baan, M.,2011. How reliable is statistical wavelet estimation?. Geophysics Journal, 76 (4), p. 59-68. https://doi.org/10.1190/1.3587220
Embry, A.F., and Johannessen, E.P., 1992. T–R Sequence Stratigraphy, Facies Analysis, and Reservoir Distribution: Examples from the Triassic of Western Canada.
Emery, D., and Myers, K., 1996. Sequence Stratigraphy. Blackwell Science, Oxford, 297. https://doi.org/10.1002/9781444313710
Flügel, E., 2010. Microfacies of carbonate rocks: Analysis, interpretation, and application. Springer, Berlin.
Global Energy Monitor project (GEMP), 2025. Global Oil and Gas Extraction Tracker, Reserves of Nasiriyah Oil Field.
Helmberger, D.V., 1974. Understanding seismograms by constructing numerical models. Engineering and Science, 38(1), pp. 26-29.
Hodgetts, D. and Howell, J.A., 2000. Synthetic seismic modeling of a large-scale geological cross-section from the Book Cliffs, Utah, USA. Petroleum Geoscience Journal, 6(3), pp. 221–229. https://doi.org/10.1144/petgeo.6.3.221
Huang, X., Wu, S., Zhang, G., and Sun, Z., 2020. First documentation of seismic stratigraphy and depositional signatures of Zhongsha Atoll (Macclesfield Bank), South China Sea. Marine and Petroleum Geology, 120, P. 104555. https://doi.org/10.1016/j.marpetgeo.2020.104555
Jassim S. Z. and Goff J. C. 2006. Geology of Iraq. Dolin, Prague, and Moravian Museum, Brno. pp. 124-127.
Jones, R.W., and Simmons, M.D., 1999. Biostratigraphy in production and development geology. Geological Society Special Publication, 3(1), P. 318. https://doi.org/10.1144/gsl.sp.1999.152.01.1
Lake L. W. and Carroll H.B.Jr., 1986. Reservoir Characterization. Geological Magazine, 124(4), P. 383. https://doi.org/10.1017/S0016756800016733
Larionov, V.V., 1969. Radiometry of Boreholes. Nedra, Moscow, P. 127. https://doi.org/10.2172/860614
Mitchum, R.M.J., Vail, P.R., and Sangree, J.B., 1977. Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences. In: Payton, C.E., Ed., Seismic Stratigraphy: Applications to Hydrocarbon Exploration, the
American Association of Petroleum Geologists (AAPG), Tulsa, 26, pp. 117-133.
Posamentier, H.W., and Allen, G.P., 1999. Siliciclastic sequence stratigraphy: concepts and applications. SEPM Concepts in Sedimentology and Paleontology, 7, P. 210.
Posamentier, H.W., and Vail, P.R., 1988. Eustatic controls on clastic deposition II: Sequence and systems tract models. SEPM (Society of Economic Paleontologists and Mineralogists), Special Publication, vol. 42, pp. 125-154. https://doi.org/10.2110/pec.88.01.0125
Roksandic, M.M., 1978. Seismic facies and sedimentary facies analysis. AAPG Continuing Education Course Note Series, 16, P. 82
Sangree, J.B., and Widmier, J.M., 1977. Seismic stratigraphy and global changes of sea level, Part 9: Seismic interpretation of clastic depositional facies. (AAPG) American Association of Petroleum Geologists Memoir, 26, pp. 165-184.
Sheriff, R.E., and Geldart, L.P., 1995. Exploration seismology. Cambridge University Press, Cambridge, pp. 575 - 592. https://doi.org/10.1017/CBO9781139168359
Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. and Lund, T.B., 2013. Arctic geology and petroleum potential. (NPF) Norwegian Petroleum Society Special Publication, 2, pp. 485-498.
