A Theoretical Calculation of Electrical Energy Production from the Incineration of Baghdad Municipal Solid Wastes

Main Article Content

Ahmed H. Hadi
Basim A. Hussain
Ahmed A. Khalaf
Abdullah F. Abdurazak

Abstract

A theoretical investigation study was carried out to determine the requirements of establishing a steam power plant by incinerating municipal solid wastes generated from the city of Baghdad. Survey data the generated quantities of municipal solid wastes from both Al-Karth and Al-Rusafa sectors of the city were utilized to predict the theoretical possible energy production that can be obtained from the incineration of this waste under controlled parameters. Results reviled that the high heating value of Baghdad’s municipal solid wastes is of about (12.789 MJ/kg) and the possible electrical energy production in the steam power plants in Al-Karth and Al-Rusafa are (119.287 MW, 203.917 MW) respectively using a steam turbine of efficiency (25%). Resulted emissions of CO2 gases are estimated to be 4209.995 ton/day. So the emission of CO2 is the main problem of this method because of its effect on global warming but it is less effect on environment from Methane, Sulphur Oxides and Nitrogen Oxides. The quantity of plastic wastes in Municipal Solid Wastes is important in increasing their average high heating value. 

Article Details

How to Cite
“A Theoretical Calculation of Electrical Energy Production from the Incineration of Baghdad Municipal Solid Wastes” (2024) Journal of Engineering, 30(05), pp. 86–97. doi:10.31026/j.eng.2024.05.06.
Section
Articles

How to Cite

“A Theoretical Calculation of Electrical Energy Production from the Incineration of Baghdad Municipal Solid Wastes” (2024) Journal of Engineering, 30(05), pp. 86–97. doi:10.31026/j.eng.2024.05.06.

Publication Dates

Received

2023-05-14

Accepted

2024-04-29

Published Online First

2024-05-01

References

Abbas A. A., Al-Rekabi W. S. N. and Hamdan A. N. A., 2017. Prediction of potential electrical energy generation from MSW of Basrah Government. 5th International Conference on Waste Management Ecology and Biological Sciences, Istanbul, Turkey. Doi:10.15242/DIRPUB.ER0517030.

Al-Ameen J. A. and Al-Hamdany M. A., 2018. Babylon governorate municipal solid waste generation rate. Journal of Engineering, 24(9), pp., 64-77. Doi:10.31026/j.eng.2018.09.05.

Al-Flaiyeh M. A., 2022. Electrical energy from waste and garbage: general review. NTU Journal of Renewable Energy, 2(1), pp., 18-26. https://www.iasj.net/iasj/pdf/c53f986e6e8a5ce0.

Al-Hashemi M. A., Al-Mandalawi G. F., 2007. Solid wastes management and treatment of some hospitals in Baghdad city. Journal of Engineering and Technology, 25(5), pp., 225-246, (in Arabic). https://www.iasj.net/iasj/pdf/8aad6e1200396787.

Al-Mohammed M. A., Ulutagay G. and Alabdraba W. M. Sh., 2021. The reality of solid waste management in Iraq and ways of development. Tikrit Journal of Engineering Sciences, 28 (3), pp., 1-20. Doi: 10.25130/tjes.28.3.01.

Al-Nakkash I. A. H., Al-Hiyaly S. A. K., Basim H., Faraj B. F., and Kasim A. S. A., 2019. Assessment of health care waste management (HCWM) in Iraq; effects and control. International Journal of innovative Service and Research Technology, 4 (5), pp., 861-864.

Al-Rawi S. M. and Al- Tayyar T. A., 2013. Solid waste composition and characteristics of Mosul city/ Iraq. Center for environmental and pollution Control, Mosul University, Iraq, pp., 1-14.

Altai H. D. S., Abed F. T., Lazim M. H. and AlRikabi H. T. S., 2022. Analysis of the problems of electricity in Iraq and recommendations of methods of overcoming them. Periodicals of Engineering and Natural Sciences, 10(1), pp., 607-614. Doi: 10.21533/pen.v10i1.2722.

Amuntzias C., Dagdeviren H., and Patokos T., 2017. A waste to energy? A critical assessment of the investigation of UK energy market by the competition and markets authority. Competition and Change, 21(1), pp. 45-60. Doi:10.1177/1024529416678070.

Andreenko T. I., Kiseleva S. V., and Rafikova Y. Y., 2022. Agricultural waste from crop production as an energy resource. IOP Conf. Series: Earth and Environmental Science, 1116(012054), pp. 1-6. Doi: 10.1088/1755-1315/1116/012054.

Anssari O.M., AlKaldy E. A., Almudhaffar N., AlTaee A. N. and Ali N. S., 2020. A feasibility study of electrical energy generation from municipal solid waste in Iraq: Najaf case study. International Journal of Electrical and Computer Engineering, 10(4), pp., 3403-3411. Doi: 10.11591/ijece.v10i4.pp3403-3411.

Ghani B. A., and Faleh N. M., 2023. Waste recycling: waste to energy system. Al-Bahir Journal for Engineering and Pure Sciences, 2(2), pp. 139-147. Doi:55810/2313-0083.1028.

Goswami R., 2020. Effectiveness of waste to energy technologies for municipal solid waste management in urban India. Turkish Online Journal of Qualitative inquiry, 11(2), pp. 670-675. Doi:10.52783/tojki.v11i2.9988.

Gupta S., and Mishra R. S., 2015. Estimation of electrical energy generation from waste to energy using incineration technology. International Journal of Advance Research and Innovation, 3 (4), pp. 631-634. https://ijari.org/assets/papers/3/4/IJARI-ME-15-12-108.pdf.

Janna H., Abbas M. D., Al-Khuzaie M. M. and Al-Ansari N., 2021. Energy content estimation of municipal solid waste by physical composition in Al-Diwaniyah city, Iraq. Journal of Ecological Engineering, 22(7), pp., 11-19. Doi:10.12911/22998993/137443.

Japan International Cooperation Agency (JICA), 2022. Data collection study on solid waste management in Iraq. Final report in Ministry of Construction and Housing and Municipalities and Public Works, Iraq, https://openjicareport.jica.go.jp/pdf/12367256.pdf.

Kapitler M., Samec N., and Kokalj F., 2011. Computational fluid dynamics calculations of waste-to-energy plant combustion characteristics. Journal of Thermal Science, 15 (1), pp. 1-16. Doi: 10.2298/TSCI101004084k.

Kappler G., Hausechild T., Tarelho L. A. D. C., and Moraes C. A. M., 2022. Waste to energy materials through pyrolysis: a review. Revista Technologia e Sociedade, 18(53), pp. 281-302. Doi: 10.3895/rts.v18n53.15798.

Khudair B.H., Ali S. K. and Jassim D. T., 2018. Prediction of municipal solid waste generation models using artificial neural network in Baghdad city. Iraq, Journal of Engineering,24(5), pp., 113-123. Doi:10.31026/j.eng.2018.05.08.

Kim J., and Jeong S., 2017. Economic and environmental cost analysis of incineration and recovery alternatives for flammable industrial waste: the case of South Korea. Journal of Sustainability, 9 (1638), pp. 1-16. Doi: 10.3390/su9091638.

Lozada P. T., Velasquez p. M., and Cuevas J. F. G., 2023. Prioritization of waste to energy technologies associated with the utilization of food waste. Sustainability, 15(5857), pp. 1-13. Doi:10.3390/su15075857.

Luna C. M. R., Carrocci L. R., Ferrufino G. L. A. A., and Balestieri J. A. P., 2010. Technical and economic assessment of power generation from municipal solid wastes incineration on steam cycle. 13th Brazilian Congress of Thermal Sciences and Engineering, December 5-10, Uberlandia, MG, Brazil. https://www.abcm.org.br/anais/encit/2010/PDF/ENC10-0663.pdf

Mensoor M. K., 2020. Medical waste management in Iraq: a case study of Baghdad. Waste Disposal and Sustainable Energy, 2, pp., 329-335. Doi:10.1007/s42768-020-00055-8.

Moora H., Roos I., Kask U., Kask L., and Ounapuu K., 2017. Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia. Energy Procedia, (128), pp. 222-229, International Scientific Conference “Environmental and Climate Technologies”, CONECT 2017, 10-12-May 2017, Riga, Latvia. Doi: 10.1016/ j.egypro.2017.09.059.

Musheb J.M., 2018. The economics of waste recycling in Iraq: wasted resources and lost opportunities. European Journal of Economics and Business Studies, 4(2), pp., 90-98. Doi: 10.26417/ejes.v4i2.p90-98.

Nada K. B., 2019. Development of methods of treatment of medical waste in hospitals of Baghdad health department/ Rusafa survey. Journal of Economics and Administrative Sciences, 25 (113), pp., 252-278 (in Arabic).

Noori H. H. and Rasheed S., 2023. Procurement management of power plants construction projects in Iraq. Journal of Engineering, 29(2), pp., 37-58. Doi:10.31026/j.eng.2023.02.03.

Pluskal J., Somplak R., Hrabec D., Nevrly V., and Hvattum L. M., 2022. Optimal location and operation of waste to energy plants when future waste composition is uncertain. Springer, 22, pp. 5765-5790. Doi:10.1007/s12351-022-00718-w.

Raja A. K., Srivastava A.P., and Dwevedi M., 2006. Power Plant Engineering. New age international limited publishers.

Saha R., and Singh B. K., 2020. Energy from waste. E3S Web of Conferences, 170(01008), pp. 1-6. Doi:10.10.51/e3sconf/202017001008.

Thanh N. V., 2022. Optimal waste to energy strategy assisted by fuzzy MCDM model for sustainable solid waste management. Sustainability, 14(2565), pp. 1-13. Doi:10.3390/su14116565.

Yadav P., and Samadder S.R., 2015. System boundaries for life cycle assessment of municipal solid waste management options. International Journal of Engineering Technology Science and Research, 2 (special issue), pp. 86-91.

Zaman A.U., 2010. Comparative study of municipal solid waste treatment technologies using life cycle assessment method, International Journal of Environmental Science and Technology, 7 (2), pp. 225-234. Doi:10.1007/BF03326132.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)