Dynamic Analysis of Fluid – Structure Interaction of Axial Fan System

  • Assim Hameed Yousif, Prof. Dr. Mechanical Eng. Dept.-University of Technology
  • Wafa Abd Soud Aljanabi, Dr Mechanical Eng. Dept.-University of Technology
  • Ali Mohammedridha Mahdi, Researcher Mechanical Eng. Dept.-University of Technology
Keywords: dynamic, fluid-structure interaction, coupling strategies, fan system, natural frequency and mode shape.

Abstract

Fluid-structure interaction method is performed to predict the dynamic characteristics of axial fan system. A fluid-structure interface physical environment method (monolithic method) is used to couple the fluid flow solver with the structural solver. The integration of the three-dimensional Navier-Stokes equations is performed in the time Doman, simultaneously to the integration of the three dimensional structural model. The aerodynamic loads are transfer from the flow to structure and the coupling step is repeated within each time step, until the flow solution and the structural solution have converged to yield a coupled solution of the aeroelastic set of equations. Finite element method is applied to solve numerically the Navier-Stockes equations coupled with the structural equations The first ten eigenvalue (natural frequency), the first ten eigenvector (mode shape) and effective stress for each part of a rotor system and complete system assembly are predicted.

The validity of the predicted dynamic characteristics of duct fan system was confirmed experimentally by investigating geometrically similar fan system test rig. Good agreement of dynamic characteristics is observed between experimental and numerical results.

 

 

Downloads

Download data is not yet available.
Published
2015-09-01
How to Cite
Yousif, A., Aljanabi, W. and Mahdi, A. (2015) “Dynamic Analysis of Fluid – Structure Interaction of Axial Fan System”, Journal of Engineering, 21(9), pp. 150-168. Available at: http://joe.uobaghdad.edu.iq/index.php/main/article/view/351 (Accessed: 8December2019).