The Applicability of Multiple MCDM Techniques for Implementation in the Priority of Road Maintenance
محتوى المقالة الرئيسي
الملخص
Priority of road maintenance can be viewed as a process influenced by decision-makers with varying decision-making power. Each decision-maker may have their view and judgment depending on their function and responsibilities. Therefore, determining the priority of road maintenance can be thought of as a process of MCDM. Regarding the priority of road maintenance, this is a difficult MCDM problem involving uncertainty, qualitative criteria, and possible causal relationships between choice criteria. This paper aims to examine the applicability of multiple MCDM techniques, which are used for assessing the priority of road maintenance, by adapting them to this sector. Priority of road maintenance problems subject to internal uncertainty caused by imprecise human judgments will be reviewed and investigated, as well as the most popular theories and methods in group MCDM for presenting uncertain information, creating weights for decision criteria, examining causal relationships, and ranking alternatives. The study concluded that through the strengths and weaknesses reached, fuzzy set theory is the most appropriate and best used in modeling uncertain information. In addition, the methods that are employed the most common in the literature that has been done to explore the correlations between decision criteria have been examined, and it is concluded that the fuzzy best-worst method may be utilized in this research. The Fuzzy VIKOR approach is most likely the best method for ranking the decision alternatives.
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Abdulkareem, H. G., and Erzaij, K. R., 2022. A spherical fuzzy AHP model for contractor assessment during project life cycle. Journal of the Mechanical Behavior of Materials, 31(1), pp. 369-380. Doi:10.1515/jmbm-2022-0042
Aczél, J., and Saaty, T.L., 1983. Procedures for synthesizing ratio judgments. Journal of Mathematical Psychology, 27(1), pp. 93-102. Doi:10.1080/09720529.2001.10697924
Agarwal, P., Das, A., and Chakraborty, P., 2004. A rational approach for prioritization of highway sections for maintenance. 6th International Conference on Managing Pavements: The Lessons, The Challenges, The Way Ahead, Brisbane Queensland, Australia, 2004.
Alani, S.H.N., and Mahjoob, A.M.R., 2021. Corruption risk analysis at the project planning stage in the Iraqi construction sector using the bowtie methodology. Engineering, Technology & Applied Science Research, 11(3), pp.7223-7227. Doi:10.48084/etasr.4060
Batanero, C., Chernoff, E.J., Engel, J., Lee, H.S., and Sánchez, E., 2016. Research on teaching and learning probability (p. 33). Springer Nature. Doi:10.1007/978-3-319-31625-3_1
Bellman, R.E., and Zadeh, L.A., 1970. Decision-making in a fuzzy environment. Management science, 17(4), pp. B-141. Doi:10.1287/mnsc.17.4.B141
Büyüközkan, G., and Berkol, Ç., 2011. Designing a sustainable supply chain using an integrated analytic network process and goal programming approach in quality function deployment. Expert Systems with Applications, 38(11), pp.13731-13748. Doi:10.1016/j.eswa.2011.04.171
Büyüközkan, G., and Çifçi, G., 2012. A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39(3), pp. 3000-3011. Doi:10.1016/j.eswa.2011.08.162
Dalkey, N., and Helmer, O., 1963. An experimental application of the Delphi method to the use of experts. Management Science, 9(3), pp. 458-467. Doi:10.1287/mnsc.9.3.458
Dempster, A.P., 1969. Upper and lower probability inferences for families of hypotheses with monotone density ratios. The Annals of Mathematical Statistics, 40(3), pp. 953-969. Doi:10.1214/aoms/1177697600
Deng, H., 1999. Multicriteria analysis with fuzzy pairwise comparison. International Journal of Approximate Reasoning, 21(3), pp. 215-231. Doi:10.1109/FUZZY.1999.793038
Devi, K., 2011. Extension of VIKOR method in intuitionistic fuzzy environment for robot selection. Expert Systems with Applications, 38(11), pp. 14163-14168. Doi:10.1016/j.eswa.2011.04.227
Diniz, M., Pereira, C.A., Polpo, A., Stern, J.M., and Wechsler, S., 2012. Relationship between Bayesian and frequentist significance indices. International Journal for Uncertainty Quantification, 2(2). Doi:10.1615/Int.J.UncertaintyQuantification.2012003647
Durbach, I.N., and Stewart, T.J., 2012. Modeling uncertainty in multi-criteria decision analysis. European Journal of Operational Research, 223(1), pp. 1-14. Doi:10.1016/j.ejor.2012.04.038
Efstathiou, J., 1984. Practical multi-attribute decision-making and fuzzy set theory. TIMS/Studies in the Management Sciences, 20, pp. 307-322.
El Safty, M.A., Zahrani, S.A., El-Bably, M.K., and El Sayed, M., 2021. Soft ζ-rough set and its applications in decision making of coronavirus. Computers, Materials and Continua, pp. 267-285. Doi:10.32604/cmc.2022.019345
Farhan, J., and Fwa, T.F., 2009. Pavement maintenance prioritization using analytic hierarchy process. Transportation Research Record, 2093(1), pp. 12-24. Doi:10.3141/2093-02
Forman, E., and Peniwati, K., 1998. Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), pp. 165-169. Doi:10.1016/S0377-2217(97)00244-0
Gabus, A., and Fontela, E., 1973. Perceptions of the world problematique: Communication procedure, communicating with those bearing collective responsibility.
Galavotti, M.C., 2017. The Interpretation of Probability: Still an Open Issue?. Philosophies, 2(3), P.20. Doi:10.3390/philosophies2030020
Govindan, K., Sarkis, J., and Palaniappan, M., 2013. An analytic network process-based multicriteria decision making model for a reverse supply chain. The International Journal of Advanced Manufacturing Technology, 68, pp. 863-880. Doi:10.1007/s00170-013-4949-2
Jana, B., Sarkar, A., Paria, A., Ghosh, T. K., and Bandyopadhyay, S., 2020. Multi Attribute Decision-making: A Survey. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11, 1919-1938. Doi:10.22214/ijraset.2018.4620
Joseph, A., 1999. Generating consensus priority point vectors: a logarithmic goal programming approach. Computers & Operations Research, 26(6), pp. 637-643. Doi:10.1016/S0305-0548(98)00083-5
Kandel, A., 1983. The Analytic Hierarchy Process-Planning, Priority Setting, Resource Allocation. Thomas L. Saaty (Ed.), McGraw-Hill, Basel (1980), p. 287.
Khalif, K.M.N.K., 2016. Generalised hybrid fuzzy multi criteria decision making based on intuitive multiple centroid defuzzification (Doctoral dissertation, University of Portsmouth).
Khazael, S.M., and Al-Bakri, M., 2021. The optimum site selection for solar energy farms using AHP in GIS environment, a case study of Iraq. Iraqi Journal of Science, pp. 4571-4587. Doi:10.24996/ijs.2021.62.11(SI).36
Kochenderfer, M.J., 2015. Decision making under uncertainty: theory and application. MIT press. Doi:10.7551/mitpress/10187.001.0001
Kolios, A., Mytilinou, V., Lozano-Minguez, E., and Salonitis, K., 2016. A comparative study of multiple-criteria decision-making methods under stochastic inputs. Energies, 9(7), P.566. Doi:10.3390/en9070566
Kordi, M., and Brandt, S.A., 2012. Effects of increasing fuzziness on analytic hierarchy process for spatial multicriteria decision analysis. Computers, Environment and Urban Systems, 36(1), pp. 43-53. Doi:10.1016/j.compenvurbsys.2011.07.004
Leskinen, P., Kangas, J., and Pasanen, A.M., 2003. Assessing ecological values with dependent explanatory variables in multi-criteria forest ecosystem management. Ecological Modelling, 170(1), pp. 1-12. Doi:10.1016/S0304-3800(03)00283-7
Lootsma, F.A., 1990. The French and the American school in multi-criteria decision analysis. RAIRO-Operations Research, 24(3), pp. 263-285. Doi:10.1051/RO/1990240302631
Mahjoob, A.M.R., Wali, M.R., and Atyah, H.A., 2016. Exploring the Factors Affecting the Elemental Cost Estimation with Relationship Analysis Using AHP. Journal of Engineering, 22(8), pp. 1-13. Doi:10.31026/j.eng.2016.08.13
Marzouk, M.M., 2011. ELECTRE III model for value engineering applications. Automation in construction, 20(5), pp. 596-600. Doi:10.1016/j.autcon.2010.11.026
Mentes, A., and Helvacioglu, I.H., 2011, January. Review of fuzzy set theory applications in safety assessment for marine and offshore industries. International Conference on Offshore Mechanics and Arctic Engineering, 44342, pp. 875-884. Doi:10.1115/OMAE2011-50244
Mikhailov, L., and Singh, M.G., 2003. Fuzzy analytic network process and its application to the development of decision support systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 33(1), pp. 33-41. Doi:10.1109/TSMCC.2003.809354
Mohamed, H.A.E., 2011. A probabilistic rough set approach to rule discovery. In Ubiquitous Computing and Multimedia Applications: Second International Conference, UCMA 2011, Daejeon, Korea, April 13-15, 2011. Proceedings, Part I 2 (pp. 55-65). Springer Berlin Heidelberg.
Nodrat, F., and Kang, D., 2018. Prioritizing Road Maintenance Activities using GIS Platform and Vb. net. International Journal of Advanced Computer Science and Applications, 9(2). Doi:10.14569/IJACSA.2018.090206
Özcan, T., Çelebi, N., and Esnaf, Ş., 2011. Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Systems with Applications, 38(8), pp. 9773-9779. Doi:10.1016/j.eswa.2011.02.022
Ramanathan, R., and Ganesh, L.S., 1994. Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages. European Journal of Operational Research, 79(2), pp. 249-265. Doi:10.1016/0377-2217(94)90356-5
Rezaei, J., 2015. Best-worst multi-criteria decision-making method. Omega, 53, pp. 49-57. Doi:10.1016/j.omega.2014.11.009
Roy, B., 1991. The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31, pp.49-73. Doi:10.1007/BF00134132
Saaty, T.L., 1980. The Analytic Hierarchy Process. Mcgraw Hill, New York. Agricultural Economics Review, 70.
Saaty, T.L., 1996. Decision making with dependence and feedback: The analytic network process (Vol. 4922, No. 2). Pittsburgh: RWS publications.
Saaty, T.L., 2004. Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. Journal of Systems science and Systems engineering, 13, pp.129-157. Doi:10.1007/s11518-006-0158-y
Salama, A.S., 2011. Some topological properties of rough sets with tools for data mining. International Journal of Computer Science Issues (IJCSI), 8(3), P. 588.
Shah, Y.U., Jain, S.S., and Parida, M., 2014. Evaluation of prioritization methods for effective pavement maintenance of urban roads. International Journal of Pavement Engineering, 15(3), pp.238-250. Doi:10.1080/10298436.2012.657798
Sivanandam, S.N., Sumathi, S., and Deepa, S.N., 2007. Introduction to fuzzy logic using MATLAB (Vol. 1). Berlin: Springer. Doi:10.1007/978-3-540-35781-0
Slim, H., and Nadeau, S., 2020. A mixed rough sets/fuzzy logic approach for modelling systemic performance variability with FRAM. Sustainability, 12(5), P.1918. Doi:10.3390/su12051918
Stewart, T.J., and Durbach, I., 2016. Dealing with uncertainties in MCDA. Multiple Criteria Decision Analysis: State of the Art Surveys, pp.467-496. Doi:10.1007/0-387-23081-5_11
Suárez, M., 2020. Philosophy of probability and statistical modelling. Cambridge University Press. Doi:10.1017/9781108985826
Tan, T., Mills, G., Papadonikolaki, E., and Liu, Z., 2021. Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Automation in Construction, 121, P.103451. Doi:10.1016/j.autcon.2020.103451
Triantaphyllou, E., and Triantaphyllou, E., 2000. Multi-criteria decision making methods (pp. 5-21). Springer US. Doi:10.1007/978-1-4757-3157-6_2
Triantaphyllou, E., and Lin, C.T., 1996. Development and evaluation of five fuzzy multiattribute decision-making methods. international Journal of Approximate reasoning, 14(4), pp. 281-310. Doi:10.1016/0888-613X(95)00119-2
Tzeng, G.H., and Huang, J.J., 2011. Multiple attribute decision making: methods and applications. CRC press. Doi:10.1201/b11032
Vogelgesang, J., and Scharkow, M., 2017. Bayesian statistics. The International Encyclopedia of Communication Research Methods, pp. 1-9.
Wang, C.H., and Wu, H.S., 2016. A novel framework to evaluate programmable logic controllers: a fuzzy MCDM perspective. Journal of Intelligent Manufacturing, 27, pp. 315-324. Doi:10.1007/s10845-013-0863-6
Wierman, M.J., 2010. An introduction to the mathematics of uncertainty. Creighton University, pp. 149-150.
Yang, Z., Abujaafar, K.M., Qu, Z., Wang, J., Nazir, S., and Wan, C., 2019. Use of evidential reasoning for eliciting bayesian subjective probabilities in human reliability analysis: A maritime case. Ocean Engineering, 186, P.106095. Doi:10.1016/j.oceaneng.2019.05.077
Zadeh, L. A. 1965. Fuzzy sets. Information and control, 8, pp. 338-353. Doi:10.1016/S0019-9958(65)90241-X
Zhao, J., Sui, Y., Xu, Y., and Lai, K.K., 2021. Industrial robot selection using a multiple criteria group decision making method with individual preferences. Plos one, 16(12), P. e0259354. Doi:10.1371/journal.pone.0259354
Zhou, Q., Huang, W., and Zhang, Y., 2011. Identifying critical success factors in emergency management using a fuzzy DEMATEL method. Safety Science, 49(2), pp. 243-252. Doi:10.1016/j.ssci.2010.08.005
Zhu, X., Meng, X., and Zhang, M., 2021. Application of multiple criteria decision making methods in construction: A systematic literature review. Journal of Civil Engineering and Management, 27(6), pp. 372-403. Doi:10.3846/jcem.2021.15260
Zimmermann, H.J., 2011. Fuzzy set theory—and its applications, Fourth Edition, Springer Science and Business Media. Doi:10.1007/978-94-010-0646-0
Zimmermann, H.J., 2010. Fuzzy set theory. Wiley interdisciplinary reviews: Computational Statistics, 2(3), pp. 317-332. Doi:10.1002/wics.82