Assessment of Rutting Resistance for Fiber-Modified Asphalt Mixtures
محتوى المقالة الرئيسي
الملخص
Rutting is one of the most complex and widespread types of distress. The rutting is frequently observed on Iraqi roads, especially at the checkpoints, forming a significant hazard on the asphalt layers. Factors such as heavy loads and high temperatures contribute to this distress. Adding fibers to a hot mix asphalt (HMA) effectively improves performance and extends the lifespan of the flexible pavement. This article used glass, steel, and basalt fibers. The wheel tracking test assessed the fibre-asphalt mixture for rutting resistance and compared it with the mix without adding fibers (control HMA).
Meanwhile, the microscopic structure of fibres and asphalt mixture modified with fibers was examined using the Field Emission Scanning Electron Microscopy (FESEM) technique. Steel, glass, and basalt fibers were incorporated into HMA in proportions of 0.25%, 0.10%, and 0.15%, respectively. The incorporation of fibers in asphalt mixtures implies lower rut depths after 5000 cycles. In comparison to the control HMA, a decrease in the rut depth is observed in fiber-asphalt mixtures, about 22.14%, 15.36%, and 9.64% for basalt, glass, and steel fiber, respectively, which consequently enhances flexible pavement resistance against rutting. The microstructure analysis showed the difference in the mixture's diameters, surface properties, and random fiber dispersion. Therefore, this dispersion contributed to creating a three-dimensional network, which improved the behaviour of HMA.
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Abdullah Nur, M., Khattak, M.J., and Bhuyan, M.R.U.K., 2013. Rutting model for HMA overlay treatment of composite pavements. International Scholarly Research Notices, P. 7. Doi:10.1155/2013/176029
Abiola, O.S., Kupolati, W.K., Sadiku, E.R., and Ndambuki, J.M., 2014. Utilization of natural fiber as modifier in bituminous mixes: A review. Construction and Building Materials, 54, pp. 305–312. Doi:10.1016/j.conbuildmat.2013.12.037
Abtahi, S.M., Sheikhzadeh, M., and Hejazi, S.M., 2010. Fiber-reinforced asphalt-concrete–a review. Construction and Building Materials, 24(6), pp. 871–877. Doi:10.1016/j.conbuildmat.2009.11.009
AL-Azawee, E.T., and Latief, R.H., 2020. The feasibility of using styrene-butadiene-styrene (Sbs) as modifier in Iraqi bituminous binder. Journal of Engineering Science and Technology, 15(3), pp. 1596–1607.
Al-bayati, A.H.K., and Lateif, R.H., 2017. Evaluating the performance of high modulus asphalt concrete mixture for base course in Iraq. Journal of Engineering, 23(6), pp. 14–33. Doi:10.31026/j.eng.2017.06.02.
Al-Kaissi, Z.A., Al-Ridha, A.S.D., and Kareem, S.M., 2017. Improving the rutting resistance of flexible pavement reinforced with steel fiber. Imperial Journal of Interdisciplinary Research (IJIR), 3, pp. 1362–2454. https://www.researchgate.net/publication/351838300.
Arabani, M., Jamshidi, R., and Sadeghnejad, M., 2014. Using of 2D finite element modeling to predict the glasphalt mixture rutting behavior. Construction and Building Materials, 68, pp. 183–191. Doi:10.1016/j.conbuildmat.2014.06.057
Arshadi, A., 2013. Importance of asphalt binder properties on rut resistance of asphalt mixture. M.Sc. Thesis, University of Wisconsin, Madison, WI, USA. http://digital.library.wisc.edu/1793/66328
Celauro, C., and Praticò, F.G., 2018. Asphalt mixtures modified with basalt fibres for surface courses. Construction and Building Materials, 170, pp. 245–253. Doi:10.1016/j.conbuildmat.2018.03.058
Chen, H., and Xu, Q., 2010. Experimental study of fibers in stabilizing and reinforcing asphalt binder. Fuel, 89(7), pp. 1616–1622. Doi:10.1016/j.fuel.2009.08.020
Cheng, Y., Yu, D., Gong, Y., Zhu, C., Tao, J., and Wang, W., 2018. Laboratory evaluation on performance of eco-friendly basalt fiber and diatomite compound modified asphalt mixture. Materials, 11(12), pp. 2400. Doi:10.3390/ma11122400
Domingos, M.D.I., and Faxina, A.L., 2016. Susceptibility of asphalt binders to rutting: literature review. Journal of Materials in Civil Engineering, 28(2), P. 04015134. Doi:10.1061/(ASCE)MT.1943-5533.0001364
Fang, H., Haddock, J.E., White, T.D., and Hand, A.J., 2004. On the characterization of flexible pavement rutting using creep model-based finite element analysis. Finite Elements in Analysis and Design, 41(1), pp. 49–73. Doi:10.1016/j.finel.2004.03.002
Faruk, A.N.M., Lee, S.I., Zhang, J., Naik, B., and Walubita, L. F., 2015. Measurement of HMA shear resistance potential in the lab: The simple punching shear test. Construction and Building Materials, 99, pp. 62–72. Doi:10.1016/j.conbuildmat.2015.09.006
Hainin, M.R., Idham, M.K., Yaro, N.S.A., Hussein, S., Warid, M.N.M., Mohamed, A., Naqibah, S.N., and Ramadhansyah, P.J., 2018. Performance of hot mix asphalt mixture incorporating kenaf fibre. IOP Conference Series: Earth and Environmental Science, 140, P. 012092. Doi:10.1088/1755-1315/140/1/012092.
Hammoum, F., Chabot, A., St-Laurent, D., Chollet, H., and Vulturescu, B., 2010. Effects of accelerating and decelerating tramway loads on bituminous pavement. Materials and Structures, 43, pp. 1257–1269. Doi:10.1617/s11527-009-9577-9
Haryati, Y., Norhidayah, A.H., Nordiana, M., Juraidah, A., Hayati, A.H.N., Ramadhansyah, P. J., Azman, M. K., and Haryati, A., 2019. Stability and rutting resistance of porous asphalt mixture incorporating coconut shells and fibres. IOP Conference Series: Earth and Environmental Science, 244(1), P. 012043. Doi: 10.1088/1755-1315/244/1/012043.
Huang, Y.H., 2004. Pavement analysis and design. New Jersey. Pearson Prentice Hall Upper Saddle River.
Köfteci, S., 2018. Experimental study on the low-cost iron wire fiber reinforced asphalt concrete. Teknik Dergi, 29(4), pp. 8515–8535. Doi:10.18400/tekderg.350135
Latief, R.H., 2019. Evaluation of the performance of glasphalt concrete mixtures for binder course. International Journal on Advanced Science Engineering Information Technology, 9(4), pp. 1251–1259. Doi: 10.18517/ijaseit.9.4.5858.
Lee, S.J., Rust, J.P., Hamouda, H., Kim, Y.R., and Borden, R.H., 2005. Fatigue cracking resistance of fiber-reinforced asphalt concrete. Textile Research Journal, 75(2), pp. 123–128. Doi:10.1177/00405175050750020
Li, L., Huang, X., Wang, L., and Li, C., 2013. Integrated experimental and numerical study on permanent deformation of asphalt pavement at intersections. Journal of Materials in Civil Engineering, 25(7), pp. 907–912. Doi:10.1061/(ASCE)MT.1943-5533.000074
Liu, Z., Xing, M., Chen, S., He, R., and Cong, P., 2014. Influence of the chloride-based anti-freeze filler on the properties of asphalt mixtures. Construction and Building Materials, 51, pp. 133–140. Doi:10.1016/j.conbuildmat.2013.09.057
Mahrez, A., Karim, M., and Katman, H., 2003. Prospect of using glass fiber reinforced bituminous mixes. Journal of the Eastern Asia Society for Transportation Studies, 5, pp., 794–807.
Mahrez, A., Karim, M. R., and Katman, H. Y., 2005. Fatigue and deformation properties of glass fiber reinforced bituminous mixes. Journal of the Eastern Asia Society for Transportation Studies, 6, pp. 997-1007. Doi:10.11175/easts.6.997
Mahrez, A., and Karim, M. R., 2007. Rutting characteristics of bituminous mixes reinforced with glass fiber. Proceedings of the Eastern Asia Society for Transportation Studies, 6, pp. 282-282. Doi:10.11175/eastpro.2007.0.282.0
Miller, J.S., and Bellinger, W.Y., 2003. Distress identification manual for the long-term pavement performance program. United States. Federal Highway Administration. Office of Infrastructure Research and Development.
Morea, F., Agnusdei, J.O., and Zerbino, R., 2011. The use of asphalt low shear viscosity to predict permanent deformation performance of asphalt concrete. Materials and Structures, 44, pp. 1241–1248. Doi:10.1617/s11527-010-9696-3
Nguyen, M.L., Blanc, J., Kerzreho, J.P., and Hornych, P., 2013. Review of glass fiber grid use for pavement reinforcement and APT experiments at IFSTTAR. Road Materials and Pavements Design, 14(1), pp. 287-308. Doi:10.1080/14680629.2013.774763
Norhidayah, A.H., Haryati, Y., Nordiana, M., Khairul Idham, M.S.M., Juraidah, A., and Ramadhansyah, P.J., 2019. Permeability coefficient of porous asphalt mixture containing coconut shells and fibres. IOP Conference Series: Earth and Environmental Science, 244, P. 012037. Doi:10.1088/1755-1315/244/1/012037
Putman, B.J., and Amirkhanian, S.N., 2004. Utilization of waste fibers in stone matrix asphalt mixtures. Resources, Conservation, and Recycling, 42(3), PP. 265–274. Doi:10.1016/j.resconrec.2004.04.005
Saleem, A.A., and Ismael, M.Q., 2020. Assessment resistance potential to moisture damage and rutting for HMA mixtures reinforced by steel fibers. Civil Engineering Journal, 6(9), pp. 1726-1738. Doi:10.28991/cej-2020-03091578
Samor, Z.A. and Sarsam, S. I., 2021 Assessing the moisture and aging susceptibility of cold mix asphalt concrete. Journal of Engineering, 27(2), pp. 59–72. Doi:10.31026/j.eng.2021.02.05.
SCRB/R9, 2003. General specification for roads and bridges, Section R/9, Hot-Mix Asphalt Concrete Pavement, Revised Edition, State Corporation of Roads and Bridges, Ministry of Housing and Construction, Republic of Iraq.
Sengoz, B., and Topal, A., 2005. Use of asphalt roofing shingle waste in HMA. Construction and Building Materials, 19(5), pp. 337–346. Doi:10.1016/j.conbuildmat.2004.08.005
Slebi-Acevedo, C.J., Lastra-González, P., Pascual-Muñoz, P., and Castro-Fresno, D., 2019. Mechanical performance of fibers in hot mix asphalt. A review. Construction and Building Materials, 200, pp. 756–769. Doi:10.1016/j.conbuildmat.2018.12.171
Tarefder, R.A., Zaman, M., and Hobson, K., 2003. A laboratory and statistical evaluation of factors affecting rutting. International Journal of Pavement Engineering, 4(1), pp. 59–68. Doi:10.1080/10298430310001593263
Ting, T.L., Ramadhansyah, P.J., Norhidayah, A.H., Yaacob, H., Hainin, M.R., Wan Ibrahim, M.H., Jayanti, D.S., and Abdullahi, A.M., 2018. Effect of treated Coconut shell and fiber on the resilient modulus of double-layer porous asphalt at different aging. IOP Conference Series: Earth and Environmental Science, 140, P. 012065. Doi:10.1088/1755-1315/140/1/012065.
Wang, H., and Al-Qadi, I.L., 2010. Evaluation of surface-related pavement damage due to tire braking. Road Materials and Pavement Design, 11(1), pp. 101–121. Doi:10.1080/14680629.2010.9690262
Wang, X., Zhou, H., Hu, X., Shen, S., and Dong, B., 2021. Investigation of the performance of ceramic fiber modified asphalt mixture. Advances in Civil Engineering, pp. 1-10. Doi:10.1155/2021/8833468
Xing, X., Chen, S., Li, Y., Pei, J., Zhang, J., Wen, Y., Li, R., and Cui, S., 2020. Effect of different fibers on the properties of asphalt mastics. Construction and Building Materials, 262, P. 120005. Doi:10.1016/j.conbuildmat.2020.120005
Xu, Q., and Solaimanian, M., 2008. Measurement and evaluation of asphalt concrete thermal expansion and contraction. Journal of Testing and Evaluation, 36(2), P. 507. Doi:10.1520/JTE101024.
Yan, L., Chu, F., Tuo, W., Zhao, X., Wang, Y., Zhang, P., and Gao, Y., 2021. Review of research on basalt fibers and basalt fiber-reinforced composites in China (I): Physicochemical and mechanical properties. Polymers and Polymer Composites, 29(9), pp. 1612–1624. Doi:10.1177/0967391120977396.
Zhang, W., Shen, S., Wu, S., and Mohammad, L.N., 2017a. Prediction model for field rut depth of asphalt pavement based on Hamburg wheel tracking test properties. Journal of Materials in Civil Engineering, 29(9), P. 04017098. Doi:10.1061/(ASCE)MT.1943-5533.000194.
Zhang, W., Huang, X., Yang, J., and Chen, X., 2017b. RETRACTED: Effect of segregation on rutting resistance of asphalt pavement. Construction and Building Materials, 147, pp. 525-532. Doi:10.1016/j.conbuildmat.2017.04.194.
Zhang, J., Fan, Z., Wang, H., Sun, W., Pei, J., and Wang, D., 2019. Prediction of dynamic modulus of asphalt mixture using micromechanical method with radial distribution functions. Materials and Structures, 52, pp. 1–12. Doi:10.1617/s11527-019-1348-7.