Copy Move Image Forgery Detection using Multi-Level Local Binary Pattern Algorithm
محتوى المقالة الرئيسي
الملخص
Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different resolutions. By considering features from multiple levels, the detection algorithm can better capture both global and local characteristics of the manipulated regions, enhancing the accuracy of forgery detection. To achieve a high accuracy rate, this paper presents a variety of scenarios based on a machine-learning approach. In Copy-Move detection, artifacts and their properties are used as image features and support Vector Machine (SVM) to determine whether an image is tampered with. The dataset is manipulated to train and test each classifier; the target is to learn the discriminative patterns that detect instances of copy-move forgery. Media Integration and Call Center Forgery (MICC-F2000) were utilized in this paper. Experimental evaluations demonstrate the effectiveness of the proposed methodology in detecting copy-move. The implementation phases in the proposed work have produced encouraging outcomes. In the case of the best-implemented scenario involving multiple trials, the detection stage achieved a copy-move accuracy of 97.8 %.
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Abdalla, Y., Iqbal, M., and Shehata, M., 2017. Copy-move forgery detection based on enhanced patch-match. International Journal of Computer Science Issues, 14(6), pp. 1–7. Doi:10.20943/01201706.17
Abdul Hossen , A.M., Ogla , R.A.A. ., Ali , M.M., and Ali , M.M., 2022. Face detection by using OpenCV’s Viola-Jones algorithm based on coding eyes. Iraqi Journal of Science, 58(2A), pp. 735–745. Doi:10.24996/ijs.2023.64.2.40.
Abdul-Samad, S.T., and Kamal, S., 2020. Image retrieval using data mining technique. Iraqi Journal of Science, 61(8), pp. 2115–2125. Doi: 10.24996/ijs.2020.61.8.26.
Abidin, A.B.Z., Majid, H.B.A., Samah, A.B.A., and Hashim, H.B., 2019. Copy-move image forgery detection using deep learning methods: a review. 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS). Doi:10.1109/icriis48246.2019.9073569.
Agarwal, V., and Mane, V., 2016. Reflective SIFT for improving the detection of copy-move image forgery. In: IEEE. 2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), 28(3), P. 939. Doi:10.1109/ICRCICN.2016.7813636
Ahmed, A.H.., and George, L.E., 2022. The use of wavelet, DCT & and quadtree for images color compression. Iraqi Journal of Science, 58(1C), pp. 550–561. Doi:10.24996/ijs.2023.64.2.37.
Akram, A., Ramzan, S., Rasool, A., Jaffar, A., Furqan, U., and Javed, W., 2022. Image splicing detection using discriminative robust local binary pattern and support vector machine. World Journal of Engineering, 19(4), pp. 459-466. Doi:10.1108/WJE-09-2020-0456
Al-Bayati, A.Q., Al-Araji, A.S., and Ameen, S.H., 2020. Arabic sentiment analysis (ASA) using deep learning approach. Journal of Engineering, 26(6), pp. 85–93. Doi:10.31026/j.eng.2020.06.07.
Alhijaj, T.B., Hameed, S.M., and Attea , B.A., 2021. A decision tree-aware genetic algorithm for botnet detection. Iraqi Journal of Science, (7), pp. 2454–2462. Doi:10.24996/ijs.2021.62.7.34.
Ali, N.H.M., and Mahdi, M.E., 2020. Detecting similarity in color images based on perceptual image hash algorithm. IOP Conference Series: Materials Science and Engineering, 737, P. 012244. Doi:10.1088/1757-899x/737/1/012244.
Al-Qershi, O.M., and Khoo, B.E., 2013. Passive detection of copy-move forgery in digital images: State-of-the-art. Forensic Science International, 231(1-3), pp. 284–295. Doi:10.1016/j.forsciint.2013.05.027.
Alshibani, D.R., and Sadeq, Z., 2018. Image content verification based on DWT and chaotic map watermarking. Iraqi Journal of Science, 59(1C), pp. 607–616. Doi: 10.24996/ijs.2020.61.7.37.
Anbu, T., Joe, M.M., and Murugeswari, G., 2020 . A comprehensive survey of detecting tampered images and localization of the tampered region. Multimedia Tools and Applications, 80(2), pp. 2713–2751. Doi:10.1007/s11042-020-09585-z
Asghar, K., Habib, Z. Hussain, M., 2017. Copy-move and splicing image forgery detection and localization techniques: a review. Australian Journal of Forensic Sciences, 49(5), pp. 281-307. Doi:10.1007/s11042-030-09553
Babu, S.T., and Rao, C.S., 2022. An optimized technique for copy–move forgery localization using statistical features. ICT Express, 8(2), pp. 244-249. Doi:10.1016/j.icte.2021.08.016.
Balajee, R.M., and Venkatesh, K., 2019. A survey on machine learning algorithms and finding the best out there for the considered seven medical data sets scenario. 12(6), pp. 3059–3059. Doi:10.5958/0974-360x.2019.00518.3.
Birajdar, G.K., and Mankar, V.H., 2013. Digital image forgery detection using passive techniques: A survey. Digital Investigation, 10(3), pp.226–245.Doi:10.1016/j.diin.2013.04.007.
Chang, J., Chen, B. H., and Tsai, C. S., 2013. LBP-based fragile watermarking scheme for image tamper detection and recovery. IEEE International Symposium on Next-Generation Electronics. 4(13), pp. 173- 176. Doi:10.1109/isne.2013.6512330.
Chauhan, V.K., Dahiya, K., and Sharma, A., 2019. Problem formulations and solvers in linear SVM: a review. Artificial Intelligence Review, 52(2), pp.803-855. Doi:10.1007/s10462-018-9614-6.
Cozzolino, D., Poggi, G., and Verdoliva, L., 2015. Efficient dense-field copy–move forgery detection. IEEE Transactions on Information Forensics and Security, 10(11), pp. 2284–2297. Doi:10.1109/tifs.2015.2455334.
Darand, M., Amanollahi, J., and Zandkarimi, S., 2017. Evaluation of the performance of TRMM Multi-satellite Precipitation Analysis (TMPA) estimation over Iran. Atmospheric Research, 190, pp. 121–127. Doi:10.1016/j.atmosres.2017.02.011
Dhir, V., 2017. A review on image forgery & its detection procedure. International Journal of Advanced Research in Computer Science, 8(4), pp. 140-148. Doi:10.26483/ijarcs.v8i4.4162.
Dhivya, S., Sangeetha, J., and Sudhakar, B., 2020. Copy-move forgery detection using SURF feature extraction and SVM supervised learning technique. Soft Computing, 24(19), pp. 14429–14440. Doi:10.1007/s00500-020-04795-x.
Hamid, I. I., and Jamel, E. M., 2022 . Image watermarking using integer wavelet transform and discrete cosine transform. Iraqi Journal of Science, 57(2B), pp. 1308–1315. Doi:10.24996/ijs.2020.61.12.43.
Hassan, J.M., and Moayed, M.W., 2023. the effect of hydraulic accumulator on the performance of hydraulic system. Journal of Engineering, 20(7), pp. 174–190. Doi: 10.31026/j.eng.2014.07.12.
Hassoon, A.S., and Jalil, L.F., 2022. Classification of Iraqi Anber rice by using image processing and KNN algorithm. Iraqi Journal of Science, 58(2A), pp. 716–725. Doi:10.24996/ijs.2023.64.2.41.
Huang, L., Chen, C., Li, W., and Du, Q., 2016. Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors. Remote Sensing, 8(6), pp. 483- 490. Doi:10.3390/rs8060483.
Huang, S., Cai, N., Pacheco, P.P., Narrandes, S., Wang, Y., and Xu, W., 2018. Applications of support vector machine (SVM) learning in cancer genomics. Cancer genomics & proteomics, 15(1), pp. 41-51. Doi:10.20922/01201603.15
Ibrahim, A., George, L.E., and Hassan, E.K., 2020. Color image compression system by using block categorization based on spatial details and DCT followed by improved entropy encoder. Iraqi Journal of Science, 61(11), pp. 3127–3140. Doi: 10.24996/ijs.2020.61.11.32.
Jaiswal, A., and Srivastava, R., 2020. A technique for image splicing detection using hybrid feature set. Multimedia Tools and Applications, 79(17). pp. 11837–11847.Doi:10.1007/s11042-019-08480-6.
Kaur, R., 2016. Image forgery and detection of copy move forgery in digital images: a survey of recent forgery detection techniques. International Journal of Computer Applications, 139(5), pp. 39–47. Doi:10.5120/ijca2016909164.
Koju, R., and Joshi, S.R., 2015. Comparative analysis of color image watermarking technique in RGB, YUV, and YCbCr Color channels. Nepal Journal of Science and Technology, 15(2), pp. 133–140. Doi:10.3126/njst.v15i2.12130.
Kumar, M., and Srivastava, S., 2017. Image forgery detection based on physics and pixels: a study. Australian Journal of Forensic Sciences, 51(2), pp. 119–134. Doi:10.1080/00450618.2017.1356868.
Lin, C., Lu, W., Huang, X., Liu, K., Sun, W., Lin, H., and Tan, Z. , 2018 . Copy-move forgery detection using combined features and transitive matching. Multimedia Tools and Applications, 78(21), pp. 30081–30096. Doi:10.1007/s11042-018-6922-4.
Manu, V.T., and Mehtre, B.M., 2016. Detection of copy-move forgery in images using segmentation and SURF. Advances in intelligent systems and computing.5(9), pp. 645–654. Doi:10.1007/978-3-319-28658-7_55.
Musaed, A., 2016. Image tampering detection based on local texture descriptor and extreme learning machine. International Conference on Computer Modelling and Simulation, 10(3), pp. 507-518. Doi:10.1109/uksim.2016.39.
Parashar, A., Upadhyay, A.K., and Gupta, K., 2018. An effectual classification approach to detect copy-move forgery using support vector machines. Multimedia Tools and Applications, 78(20), pp. 29413–29429. Doi.org/10.1007/s11042-018-6707-9.
Pennington, H.G., Li, L., and Spanu, P.D., 2015. Identification and selection of normalization controls for quantitative transcript analysis in Blumeria graminis. Molecular Plant Pathology, 17(4), pp .625–633. Doi:10.1111/mpp.12300.
Prinkle, R., and Jyoti, R., 2015. Copy-move forgery attack detection in digital images. International Journal of Engineering Research, 4(06), pp 1211-1217. Doi:10.17577/ijertv4is061110.
Reddy, R.V.K., Raju, K.P., Kumar, L.R. and Kumar, M.J., 2016. Grey level to RGB using YCbCr color space Technique. International Journal of Computer Applications, 147(7), pp. 25– 28. Doi:10.5120/ijca2016911180
Saleem, E. ., and El Abbadi, N. K., 2020 . Auto colorization of gray-scale image using ycbcr color space. Iraqi Journal of Science, 61(12), pp. 3379–3386. Doi:10.24996/ijs.2020.61.12.26.
Salih, M. M., Ahmed, M. A., Al-Bander, B., Hasan, K. F., Shuwandy, M. L., and Al-Qaysi, Z., 2023. Benchmarking framework for COVID-19 classification machine learning method based on fuzzy decision by opinion score method. Iraqi Journal of Science, 64(2), pp. 922–943. Doi:10.24996/ijs.2023.64.2.36.
Silva, E., Carvalho, T., Ferreira, A., and Rocha, A., 2015. Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes. Journal of Visual Communication and Image Representation, 29(8), pp. 16–32. Doi:10.1016/j.jvcir.2015.01.016.
Solaiyappan, S., and Wen, Y., 2022. Machine learning based medical image deepfake detection: A comparative study. Machine Learning with Applications, 8(15), P.100298. Doi:10.1016/j.mlwa.2022.100298.
Srivastava, V., and Yadav, S.K. , 2021. Digital image tampering detection using multilevel local binary pattern texture descriptor. Journal of Applied Security Research, 17(1), pp. 62–79. Doi:10.1080/19361610.2021.1883397
Suresh, G., and Rao, C.S., 2016. Copy move forgery detection using glcmbased statistical features. International Journal on Cybernetics & Informatics (IJCI), 5(4), P.165. Doi:10.1010/s10462-017-8614-8.
Thakur, T., Singh, K., and Yadav, A., 2018. Blind approach for digital image forgery detection. International Journal of Computer Applications, 179(10), pp. 34–42. Doi:10.5120/ijca2018916108.
Wang, C., Zhang, Z., and Zhou, X., 2018. An image copy-move forgery detection scheme based on A-KAZE and SURF features. Symmetry, 10(12), P.706. Doi:10.1008/s11042-018-54320.
Wu, Y., Abd-Almageed, W., and Natarajan, P., 2018. BusterNet: detecting copy-move image forgery with source/target localization. Computer Vision – ECCV 2018,16(7), pp. 170–186. Doi:10.1007/978-3-030-01231-1_11.
Zhang, Q., Lu, W., Wang, R., and Li, G., 2018. Digital image splicing detection based on markov features in block DWT domain. Multimedia Tools and Applications, 77(23), pp. 31239–31260. Doi:10.1007/s11042-018-6230-z.