تحديد امثل مجال لكثافة الطين لتكوين التنومة في جنوب العراق
محتوى المقالة الرئيسي
الملخص
تساهم مشاكل عدم استقرار الآبار في زيادة الوقت غير الإنتاجي، خاصة عند حفر الصخور الصخرية. في الماضي، كان الحفر يعاني من العديد من المشكلات، بما في ذلك فقدان الطين، والثقب الضيق، والأنابيب الملتصقة ميكانيكيًا، والتجويف، وانهيار الثقوب الكبيرة. الغرض من هذه الدراسة هو بناء نموذج الأرض الميكانيكية (MEM) لتقييم استقرار حفرة البئر. ومن خلال تطبيق MEM، ركزت الدراسة على تحديد مجموعة من الأوزان الطينية التي من شأنها ضمان السلامة وتحسين عملية حفر الآبار التطويرية. أشارت دراسة عدم استقرار حفرة البئر إلى أن العامل الرئيسي الذي ساهم في هذه المضاعفات هو عدم كفاية وزن الطين أثناء عملية الحفر في تكوين تنومة الصخري. علاوة على ذلك، مع تغير ميل حفرة البئر، تغيرت أيضًا كمية كثافة الحفر اللازمة لاختراق تكوين تنومة بشكل كبير. وفي تكوين التنومة يجب تجنب زوايا البئر التي تزيد عن 20 درجة، حسب النموذج. أشار النموذج إلى أن خطر انهيار الحفرة في تكوين تنومة انخفض نسبياً في اتجاه الشمال الغربي-الجنوبي (في اتجاه الحد الأدنى من الإجهاد الأفقي). بالإضافة إلى ذلك، كشف تحليل الحساسية أن نطاق التصميم الأمثل لوزن الطين في الآبار العمودية يتراوح بين 11 و14.9 جزء لكل جالون، وتضيق نافذة الطين عندما يتجاوز الانحراف 10 درجات. تقدم نتائج هذه الدراسة مساهمات كبيرة في فهم كيفية اختيار معايير الوزن الطيني المناسبة وتصميم عمليات الحفر لضمان الاستقرار وتقليل تكوين الصخر الزيتي في حفرة البئر (تكوين تنومة).
تفاصيل المقالة
كيفية الاقتباس
تواريخ المنشور
الإستلام
النسخة النهائية
الموافقة
النشر الالكتروني
المراجع
Aadnoy, B.S. and Looyeh, R., 2019. Petroleum rock mechanics: drilling operations and well design. Gulf Professional Publishing.
Abbas, A.K., Alhussainy, S.D., Abdul Hussien, H.A. and Flori, R.E., 2019, June. Safe mud weight window determination: a case study from southern Iraq. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-2019). ARMA.
Abbas, A.K., Flori, R.E. and Alsaba, M., 2018. Geomechanical modeling and wellbore stability analysis approach to plan deep horizontal wells across problematic formations. Paper presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference Unconventional Resources Technology Conference, Houston, Texas, 23-25 July. URTEC-2879569-MS. http://dx.doi.org/10.15530/urtec-2018-2879569.
Adelinet, M., Fortin, J., Guéguen, Y., Schubnel, A., and Geoffroy, L., 2010. Frequency and fluid effects on elastic properties of basalt: Experimental investigations. Geophysical Research Letters, 37(2). http://dx.doi.org/10.1029/2009GL041660.
Ahmed, M., Al-Shehri, H.A., Haidary, S.A. and Povstyanova, M., 2016, April. A comprehensive geomechanical study to understand drilling challenges in the Manifa field offshore, Saudi Arabia. In SPE Kingdom of Saudi Arabia Annual Technical
Symposium and Exhibition (pp. SPE-182833). SPE. http://dx.doi.org/10.2118/182833-MS.
Al-Ajmi, A.M. and Zimmerman, R.W., 2005. Relation between the Mogi and the Coulomb failure criteria. International Journal of Rock Mechanics and Mining Sciences, 42(3), pp.431-439. http://dx.doi.org/10.1016/j.ijrmms.2004.11.004.
Allawi, R.H. and Al-Jawad, M.S., 2023. Wellbore stability analysis and selecting safe mud weight window for Mishrif reservoir in Southern Iraq. Arabian Journal of Geosciences, 16(5), P.345. https://doi.org/10.1007/s12517-023-11435-9.
Allawi, R.H., Al-Jawad, M.S. and Alfarge, D., 2022. A new empirical equation to predict the pore pressure in oil reservoirs. Arabian Journal of Geosciences, 15(8), P.701. http://dx.doi.org/10.1007/s12517-022-09961-z.
Alsultan, H.A., Awadh, S.M., Al-Owaidi, M.R. and Al-Khafaji, A.J., 2021. Sequence stratigraphy and depositional environment of the Zubair formation in Rumaila oilfields, Southern Iraq: Microfacies and Geochemistry. The Iraqi Geological Journal, pp. 28-41. http://dx.doi.org/10.46717/igj.54.2B.3Ms-2021-08-23.
Awadh, S.M., Al-Mimar, H.S. and Al-Yaseri, A.A., 2018. Salinity mapping model and brine chemistry of Mishrif reservoir in Basrah oilfields, Southern Iraq. Arabian Journal of Geosciences, 11(18), pp. 1-12. http://dx.doi.org/10.1007/s12517-018-3908-5.
Awadh, S.M., Al-Mimar, H.S. and Yaseen, Z.M., 2021. Effect of water flooding on oil reservoir permeability: Saturation index prediction model for giant oil reservoirs, Southern Iraq. Natural Resources Research, pp. 1- 13. http://dx.doi.org/10.1007/s11053-021-09923-4.
Aziz, Q.A.A. and Hussein, H.A., 2021. Mechanical rock properties estimation for carbonate reservoir using laboratory measurement: A case study from Jeribe, Khasib and Mishrif formations in Fauqi oil field. The Iraqi Geological Journal, pp.88-102. https://doi.org/10.46717/igj.54.1E. 8Ms-2021-05-29.
Biot, M.A., 1941. General theory of three‐dimensional consolidation. Journal of Applied Physics, 12(2), pp.155-164. https://doi.org/10.1063/1.1712886.
Blake, O.O., Ramsook, R., Faulkner, D.R. and Iyare, U.C., 2021. Relationship between the static and dynamic bulk moduli of argillites. Pure and Applied Geophysics, 178, pp.1339-1354. https://link.springer.com/article/10.1007/s00024-021-02683-5.
Dakhiel, A.H. and Hadi, H.A., 2021. Integrated 3D mechanical earth modelling to intensively investigate the wellbore instability of Zubair oil field, Southern Iraq. The Iraqi Geological Journal, pp.38-58. https://doi.org/10.46717/igj.54.2E.4Ms-2021-11-20.
Darvishpour, A., Seifabad, M.C., Wood, D.A. and Ghorbani, H., 2019. Wellbore stability analysis to determine the safe mud weight window for sandstone layers. Petroleum Exploration and Development, 46(5), pp.1031-1038. http://dx.doi.org/10.1016/S1876-3804(19)60260-0.
Edan, B.K. and Hussein, H.A.A., 2023. Geomechanics analysis of well drilling instability: a review. Journal of Engineering, 29(08), pp.94-105. https://doi.org/10.31026/j.eng.2023.08.07.
Faraj, A.K. and Hussein, H.A.A., 2023. Vertical stress prediction for Zubair oil field/case study. Journal of Engineering, 29(2), pp.137-152. http://dx.doi.org/10.31026/j.eng.2023.02.09.
Faraj, A.K. and Hussein, H.A.H.A., 2023, September. Wellbore instability analysis using geomechanical model for carbonate reservoir in Zubair oil field, Southern Iraq. In AIP Conference Proceedings, 2839(1). AIP Publishing. http://dx.doi.org/10.1063/5.0167695.
Fjaer, E., 2008. Petroleum related rock mechanics (Vol. 491). Elsevier.
Gough, D. I. and Bell, J. S., 2017. Stress orientations from borehole wall fractures with examples from Colorado, east Texas, and northern Canada, Canadian Journal of Earth Sciences, 19(7), pp. 1358–1370. https://doi.org/10.1139/e82-118.
Harrypersad-Daniel, A. M., Blake, O. O., and Ramsook, R., 2022. Determining the static Young’s modulus and Poisson’s ratio, and compressive strength of the friable Erin Formation rocks using P-wave velocity. Journal of Applied Geophysics, 198, P. 104557. https://doi.org/10.1016/j.jappgeo.2022.104557.
Ma, T., Chen, P., Yang, C. and Zhao, J., 2015. Wellbore stability analysis and well path optimization based on the breakout width model and Mogi–Coulomb criterion. Journal of Petroleum Science and Engineering, 135, pp.678-701. https://doi.org/10.1016/j.petrol.2015.10.029.
Ma, T., Xiang, G., Shi, Y. and Liu, Y., 2022. Horizontal in situ stresses prediction using a CNN-BiLSTM-attention hybrid neural network. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(5), P.152. http://dx.doi.org/10.1007/s40948-022-00467-2.
Ma, T., Zhang, Y., Qiu, Y., Liu, Y. and Li, Z., 2022. Effect of parameter correlation on risk analysis of wellbore instability in deep igneous formations. Journal of Petroleum Science and Engineering, 208, P.109521. https://doi.org/10.1016/j.petrol.2021.109521.
Mansourizadeh, M., Jamshidian, M., Bazargan, P. and Mohammadzadeh, O., 2016. Wellbore stability analysis and breakout pressure prediction in vertical and deviated boreholes using failure criteria–A case study. Journal of Petroleum Science and Engineering, 145, pp.482-492. http://dx.doi.org/10.1016/j.petrol.2016.06.024.
Mohammed, K., Alwassiti, A.A. and Al-Bidry, M.A., 2019, July. Experimental study on Tanuma shale stability using drilling fluids with different additives. In IOP Conference Series: Materials Science and Engineering, 579(1), P. 012002. IOP Publishing. http://dx.doi.org/10.1088/1757-899X/579/1/012002.
Neeamy, A.K. and Selman, N.S., 2020. Building 1D mechanical earth model for Zubair oilfield in Iraq. Journal of Engineering, 26(5), pp.47-63. http://dx.doi.org/10.31026/j.eng.2020.05.04.
Neeamy, A.K. and Selman, N.S., 2020. Wellbore breakouts prediction from different rock failure criteria. Journal of Engineering, 26(3), pp.55-64. http://dx.doi.org/10.31026/j.eng.2020.03.05.
Peng, S. and Zhang, J., 2007. Engineering geology for underground rocks. Springer Science & Business Media. http://dx.doi.org/10.1007/978-3-540-73295-2.
Reynolds, S.D., Mildren, S., Hillis, R.R., and Meyer, J.J.2006. Constraining stress magnitudes using petroleum exploration data in the Cooper Eromanga Basins, Australia, vol. 415.
Shaban, S.D. and Hadi, H.A., 2020. Geomechanical analysis to avoid serious drilling hazards in Zubair oilfield, Southern Iraq. Iraqi Journal of Science, pp.1994-2003. https://doi.org/10.24996/ijs.2020.61.8.16.
Terzaghi, K., Peck, R.B. and Mesri, G., 1996. Soil mechanics in engineering practice. John Wiley & sons.
Thiercelin, M.J. and Plumb, R.A., 1994. Core-based prediction of lithologic stress contrasts in East Texas formations. SPE Formation Evaluation, 9(04), pp.251-258. https://doi.org/10.2118/21847-PA.
Veatch Jr, R.W. and Moschovidis, Z.A., 1986, March. An overview of recent advances in hydraulic fracturing technology. In SPE International Oil and Gas Conference and Exhibition in China (pp. SPE-14085). SPE. https://doi.org/10.2118/14085-MS.
Vernik, L. and Zoback, M.D., 1992. Estimation of maximum horizontal principal stress magnitude from stress‐induced well bore breakouts in the Cajon Pass scientific research borehole. Journal of Geophysical Research: Solid Earth, 97(B4), pp.5109-5119. https://doi.org/10.1029/91JB01673.
Yang, X., Shi, X., Meng, Y. and Xie, X., 2020. Wellbore stability analysis of layered shale based on the modified Mogi–Coulomb criterion. Petroleum, 6(3), pp.246-252. https://doi.org/10.1016/j.petlm.2019.11.002.
Zimmerman, R.W. and Al-Ajmi, A.M., 2006, November. Stability analysis of deviated boreholes using the Mogi-Coulomb failure criterion, with applications to some North Sea and Indonesian Reservoirs. In IADC/SPE Asia Pacific Drilling Technology conference and exhibition. OnePetro. https://doi.org/10.2118/104035-MS.
Zoback, M.D., 2010. Reservoir geomechanics. Cambridge University Press.