دراسة العوامل التي تؤثر على أداء النظام الشمسي الكهروضوئي العائم على البنى التحتية المائية الرئيسية في العراق

محتوى المقالة الرئيسي

Zeena A. Abdulhadi
Emad T. Hashim
Moneer H. Tolephih

الملخص

لقد أصبحت مشكلة المياه والطاقة في جميع أنحاء العالم قضية ملحة تتطلب العمل التعاوني. في الآونة الأخيرة، اكتسبت محطات الطاقة الشمسية العائمة اهتماما كبيرا كبديل يمكن الاعتماد عليه. تستخدم هذه المحطات وحدات كهروضوئية موضوعة على سطح المنشآت المائية، مثل خزانات السدود. وبصرف النظر عن إنتاج الطاقة، توفر هذه التكنولوجيا فوائد تكميلية مقارنة بالأنظمة الأرضية، بما في ذلك الحفاظ على الأراضي والمياه وتحسين كفاءة الوحدة. تبحث الدراسة الحالية في تأثير تغطية السدود الخمسة الرئيسية في العراق: دوكان ودربنديخان وحمرين وحديثة والموصل على إنتاج الطاقة وخسائر التبخر. تم أيضاً دراسة تأثير نسبة التغطية للقيم 5%، 10%، 25%، 50%، 75% و100%. أظهرت النتائج أن تغطية الخزانات بنسبة 100% يمكن أن تنتج 230.53، 7526666، 15561، 244059 و184692 ميغاواط من خزانات سدود دوكان ودربنديخان وحمرين وحديثة والموصل على التوالي. كما أظهرت النتائج أن تغطية خزانات السدود بنسبة 75% يمكن أن تقلل من معدل التبخر 15 مرة.


 

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"دراسة العوامل التي تؤثر على أداء النظام الشمسي الكهروضوئي العائم على البنى التحتية المائية الرئيسية في العراق" (2025) مجلة الهندسة, 31(3), ص 63–80. doi:10.31026/j.eng.2025.03.04.

المراجع

Abd-Elhamid, H.F., Ahmed, A., Zeleňáková, M., Vranayová, Z. and Fathy, I., 2021. Reservoir management by reducing evaporation using floating photovoltaic system: a case study of lake Nasser, Egypt. Water, 13(6), P.769. https://doi.org/10.3390/w13060769.

Abid, M., Abid, Z., Sagin, J., Murtaza, R., Sarbassov, D. and Shabbir, M., 2018. Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries. International Journal of Environmental Science and Technology, 16(3), pp.1755–1762. https://doi.org/10.1007/s13762-018-2080-5.

Adebayo, T.S., Agboola, M.O., Rjoub, H., Adeshola, I., Agyekum, E.B. and Kumar, N.M., 2021. Linking economic growth, urbanization, and environmental degradation in China: What is the role of hydroelectricity consumption?. International Journal of Environmental Research and Public Health, 18(13), P.6975. https://doi.org/10.3390/ijerph18136975.

Agyekum, E.B., Adebayo, T.S., Bekun, F.V., Kumar, N.M. and Panjwani, M.K., 2021. Effect of two different heat transfer fluids on the performance of solar tower CSP by comparing recompression supercritical CO2 and rankine power cycles, China. Energies, 14(12), p.3426. https://doi.org/10.3390/en14123426.

Al-Dulaimi, M.J. and Amori, K.E., 2022. Optical and thermal performance of a parabolic trough collector for different receiver geometries. Arabian Journal for Science and Engineering, 47(12), pp.16117–16133. https://doi.org/10.1007/s13369-022-06795-5.

Al‐Dulaimi, M.J. and Amori, K.E., 2023. A tubular solar still integrated with a heat pipe. Heat Transfer, 52(4), pp.3353–3371. https://doi.org/10.1002/htj.22831.

Alvarez, V.M., González-Real, M.M., Baille, A., Valero, J.F.M. and Elvira, B.G., 2008. Regional assessment of evaporation from agricultural irrigation reservoirs in a semiarid climate. Agricultural Water Management, 95(9), pp.1056–1066. https://doi.org/10.1016/j.agwat.2008.04.003.

Amori, K.E. and Al-Damook, M.A., 2023. Performance analysis of four conceptual designs for the air based photovoltaic/thermal collectors. Journal of Engineering, 20 (06), pp. 28–45. https://doi.org/10.31026/j.eng.2014.06.03.

Ayeng’o, S.P., Axelsen, H., Haberschusz, D. and Sauer, D.U., 2019. A model for direct-coupled PV systems with batteries depending on solar radiation, temperature and number of serial connected PV cells. Solar Energy, 183, pp.120–131. https://doi.org/10.1016/j.solener.2019.03.010.

Aziz, S.F., Abdulrahman, K.Z., Ali, S.S. and Karakouzian, M., 2023. Water harvesting in the Garmian region (Kurdistan, Iraq) using GIS and remote sensing. Water, [online] 15(3), p.507. https://doi.org/10.3390/w15030507.

Azmi, M.S.M., Othman, M.Y.Hj., Ruslan, M.H.Hj., Sopian, K. and Majid, Z.A.A., 2013. Study on electrical power output of floating photovoltaic and conventional photovoltaic. In AIP Conference Proceedings, (Volume 1571) pp. 95–101. https://doi.org/10.1063/1.4858636.

Choi, Y.K., Choi, W.S. and Lee, J.H., 2016. Empirical research on the efficiency of floating PV systems. Science of Advanced Materials, 8(3), pp.681–685. https://doi.org/10.1166/sam.2016.2529.

Curtarelli, M.P., Alcântara, E.H., De Araújo, C.A.S., Stech, J.L. and Lorenzzetti, J.A., 2013. Assessment of temporal dynamics of evaporation in the Itumbiara reservoir, GO, using remote sensing data. Revista Ambiente and Água, 8(1). https://doi.org/10.4136/ambi-agua.1083.

De La Parra, I., Muñoz, M., Lorenzo, E., García, M., Marcos, J. and Martínez-Moreno, F., 2017. PV performance modelling: A review in the light of quality assurance for large PV plants. Renewable and Sustainable Energy Reviews, 78, pp.780–797. https://doi.org/10.1016/j.rser.2017.04.080.

Dubey, S., Sarvaiya, J.N. and Seshadri, B., 2013. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world – A Review. Energy Procedia, 33, pp.311–321. https://doi.org/10.1016/j.egypro.2013.05.072.

Durković, V. and Đurišić, Ž., 2017. Analysis of the potential for use of floating PV power plant on the Skadar Lake for electricity supply of Aluminium Plant in Montenegro. Energies, 10(10), p.1505. https://doi.org/10.3390/en10101505.

Fereshtehpour, M., Sabbaghian, R.J., Farrokhi, A., Jovein, E.B. and Sarindizaj, E.E., 2021. Evaluation of factors governing the use of floating solar system: A study on Iran’s important water infrastructures. Renewable Energy, [online] 171, pp.1171–1187. https://doi.org/10.1016/j.renene.2020.12.005.

Hahsim, E.T. and Abbood, A.A., 2016. Temperature effect on power drop of different photovoltaic modules. Journal of Engineering, 22(5), pp.129–143. https://doi.org/10.31026/j.eng.2016.05.09.

Hahsim, E.T. and Khaled, A.J., 2016. Experimental and simulation for the effect of partial shading on solar panel performance. Journal of Engineering, 22(6), pp.87–99. https://doi.org/10.31026/j.eng.2016.06.07.

Hartzell, T.S., 2016. Evaluating potential for floating solar installations on arizona water management infrastructure. http://arizona.openrepository.com/arizona/handle/10150/608582.

Harwell, G.R., 2012. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas. Scientific Investigations Report. https://doi.org/10.3133/sir20125202.

Hasan, D.J. and Farhan, A.A., 2020. The effect of staggered porous fins on the performance of Photovoltaic panel in Baghdad. Journal of Engineering, 26(8), pp.1–13. https://doi.org/10.31026/j.eng.2020.08.01.

Hassan AI-Samawi.,2008. Dams in Iraq. Ministry of water Resources. Planning and Follow_up Department. Large ImpIemented Dams, pp.7-38

Kadhim, A.M. and Aljubury, I.M.A., 2020. Experimental evaluation of evaporative cooling for enhancing photovoltaic panels efficiency using underground water. Maǧallaẗ Al-handasaẗ/Journal of Engineering, 26(8), pp.14–33. https://doi.org/10.31026/j.eng.2020.08.02.

Kaya, Y.Z., Zelenakova, M., Üneş, F., Demirci, M., Hlavata, H. and Mesaros, P., 2021. Estimation of daily evapotranspiration in Košice City (Slovakia) using several soft computing techniques. Theoretical and Applied Climatology, 144(1–2), pp.287–298. https://doi.org/10.1007/s00704-021-03525-z.

Kim, S.M., Oh, M. and Park, H.-D., 2019. Analysis and prioritization of the floating photovoltaic system potential for reservoirs in Korea. Applied Sciences, 9(3), p.395. https://doi.org/10.3390/app9030395.

Liu, L., Wang, Q., Lin, H., Li, H., Sun, Q. and Wennersten, R., 2017. Power generation efficiency and prospects of floating photovoltaic systems. Energy Procedia, 105, pp.1136–1142. https://doi.org/10.1016/j.egypro.2017.03.483.

Mahmood, D.M.N. and Aljubury, I.M.A., 2023. Experimental evaluation of PV panel efficiency using evaporative cooling integrated with water spraying. Journal of Engineering, 29(5), pp.29–48. https://doi.org/10.31026/j.eng.2023.05.03.

Majid, Z. A., Ruslan, M.H., Sopian, K., Othman, M.Y. and Azmi, M.S.M., 2014. Study on performance of 80 Watt floating photovoltaic panel. Journal of Mechanical Engineering and Sciences, 7, pp.1150–1156. https://doi.org/10.15282/jmes.7.2014.14.0112.

Martínez-Granados, D., Maestre-Valero, J.F., Calatrava, J. and Martínez-Alvarez, V., 2011. The economic impact of water evaporation losses from water reservoirs in the Segura Basin, SE Spain. Water Resources Management, 25(13), pp.3153–3175. https://doi.org/10.1007/s11269-011-9850-x.

Nunes, H.G.G., Pombo, J.A.N., Bento, P.M.R., Mariano, S.J.P.S. and Calado, M.R.A., 2019. Collaborative swarm intelligence to estimate PV parameters. Energy Conversion and Management, 185, pp.866–890. https://doi.org/10.1016/j.enconman.2019.02.003.

Pasalic, S., Aksamovic, A. and Avdakovic, S., 2018. Floating photovoltaic plants on artificial accumulations — Example of Jablanica Lake. In 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus. IEEE. https://doi.org/10.1109/energycon.2018.8398765.

Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series a, Mathematical and Physical Sciences, 193(1032), pp.120–145. https://doi.org/10.1098/rspa.1948.0037.

Pochwat, K., Słyś, D. and Kordana, S., 2017. The temporal variability of a rainfall synthetic hyetograph for the dimensioning of stormwater retention tanks in small urban catchments. Journal of Hydrology, 549, pp.501–511. https://doi.org/10.1016/j.jhydrol.2017.04.026.

Sahu, A., Yadav, N. and Sudhakar, K., 2016. Floating photovoltaic power plant: A review. Renewable and Sustainable Energy Reviews, 66, pp.815–824. https://doi.org/10.1016/j.rser.2016.08.051.

Santafé, M.R., Soler, J.B.T., Romero, F.J.S., Gisbert, P.S.F., Gozálvez, J.J.F. and Gisbert, C.M.F., 2014. Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs. Energy, 67, pp.246–255. https://doi.org/10.1016/j.energy.2014.01.083.

Silvério, N.M., Barros, R.M., Filho, G.L.T., Redón-Santafé, M., Santos, I.F.S.D. and De Mello Valério, V.E., 2018. Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the São Francisco River basin. Energy Conversion and Management, 171, pp.339–349. https://doi.org/10.1016/j.enconman.2018.05.095.

Song, J. and Choi, Y., 2016. Analysis of the potential for use of floating photovoltaic systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea. Energies, 9(2), p.102. https://doi.org/10.3390/en9020102.

Stan, F.-I., Neculau, G., Zaharia, L., Ioana-Toroimac, G. and Mihalache, S., 2016. Study on the evaporation and evapotranspiration measured on the Căldăruşani Lake (Romania). Procedia Environmental Sciences, 32, pp.281–289. https://doi.org/10.1016/j.proenv.2016.03.033.

Stec, A. and Zeleňáková, M., 2019. An Analysis of the effectiveness of two rainwater harvesting systems located in Central Eastern Europe. Water, 11(3), p.458. https://doi.org/10.3390/w11030458.

Sudhakar, P., Santosh, R., Asthalakshmi, B., Kumaresan, G. and Velraj, R., 2021. Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique. Renewable Energy, 172, pp.1433–1448. https://doi.org/10.1016/j.renene.2020.11.138.

Teixeira, L.E., Caux, J., Beluco, A., Bertoldo, I., Louzada, J.A.S. and Eifler, R.C., 2015. Feasibility study of a hydro PV hybrid system operating at a dam for water supply in Southern Brazil. Journal of Power and Energy Engineering, 03(09), pp.70–83. https://doi.org/10.4236/jpee.2015.39006.

Valiantzas, J.D., 2006. Simplified versions for the Penman evaporation equation using routine weather data. Journal of Hydrology, 331(3–4), pp.690–702. https://doi.org/10.1016/j.jhydrol.2006.06.012.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.